学习在虚拟世界中发现堕落的人

F. Carrara, Lorenzo Pasco, C. Gennaro, F. Falchi
{"title":"学习在虚拟世界中发现堕落的人","authors":"F. Carrara, Lorenzo Pasco, C. Gennaro, F. Falchi","doi":"10.1145/3549555.3549573","DOIUrl":null,"url":null,"abstract":"Falling is one of the most common causes of injury in all ages, especially in the elderly, where it is more frequent and severe. For this reason, a tool that can detect a fall in real time can be helpful in ensuring appropriate intervention and avoiding more serious damage. Some approaches available in the literature use sensors, wearable devices, or cameras with special features such as thermal or depth sensors. In this paper, we propose a Computer Vision deep-learning based approach for human fall detection based on largely available standard RGB cameras. A typical limitation of this kind of approaches is the lack of generalization to unseen environments. This is due to the error generated during human detection and, more generally, due to the unavailability of large-scale datasets that specialize in fall detection problems with different environments and fall types. In this work, we mitigate these limitations with a general-purpose object detector trained using a virtual world dataset in addition to real-world images. Through extensive experimental evaluation, we verified that by training our models on synthetic images as well, we were able to improve their ability to generalize. Code to reproduce results is available at https://github.com/lorepas/fallen-people-detection.","PeriodicalId":191591,"journal":{"name":"Proceedings of the 19th International Conference on Content-based Multimedia Indexing","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Learning to Detect Fallen People in Virtual Worlds\",\"authors\":\"F. Carrara, Lorenzo Pasco, C. Gennaro, F. Falchi\",\"doi\":\"10.1145/3549555.3549573\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Falling is one of the most common causes of injury in all ages, especially in the elderly, where it is more frequent and severe. For this reason, a tool that can detect a fall in real time can be helpful in ensuring appropriate intervention and avoiding more serious damage. Some approaches available in the literature use sensors, wearable devices, or cameras with special features such as thermal or depth sensors. In this paper, we propose a Computer Vision deep-learning based approach for human fall detection based on largely available standard RGB cameras. A typical limitation of this kind of approaches is the lack of generalization to unseen environments. This is due to the error generated during human detection and, more generally, due to the unavailability of large-scale datasets that specialize in fall detection problems with different environments and fall types. In this work, we mitigate these limitations with a general-purpose object detector trained using a virtual world dataset in addition to real-world images. Through extensive experimental evaluation, we verified that by training our models on synthetic images as well, we were able to improve their ability to generalize. Code to reproduce results is available at https://github.com/lorepas/fallen-people-detection.\",\"PeriodicalId\":191591,\"journal\":{\"name\":\"Proceedings of the 19th International Conference on Content-based Multimedia Indexing\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 19th International Conference on Content-based Multimedia Indexing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3549555.3549573\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 19th International Conference on Content-based Multimedia Indexing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3549555.3549573","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

跌倒是所有年龄段中最常见的伤害原因之一,尤其是老年人,它更频繁和严重。因此,一种能够实时检测到坠落的工具可以帮助确保适当的干预,避免更严重的损害。文献中可用的一些方法使用传感器,可穿戴设备或具有特殊功能的相机,如热传感器或深度传感器。在本文中,我们提出了一种基于计算机视觉深度学习的人体跌倒检测方法,该方法基于大量可用的标准RGB相机。这种方法的一个典型限制是缺乏对不可见环境的泛化。这是由于在人类检测过程中产生的错误,更普遍的是,由于无法获得专门研究不同环境和跌倒类型的跌倒检测问题的大规模数据集。在这项工作中,我们通过使用虚拟世界数据集和真实世界图像训练的通用对象检测器来减轻这些限制。通过广泛的实验评估,我们验证了通过在合成图像上训练我们的模型,我们能够提高它们的泛化能力。复制结果的代码可从https://github.com/lorepas/fallen-people-detection获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Learning to Detect Fallen People in Virtual Worlds
Falling is one of the most common causes of injury in all ages, especially in the elderly, where it is more frequent and severe. For this reason, a tool that can detect a fall in real time can be helpful in ensuring appropriate intervention and avoiding more serious damage. Some approaches available in the literature use sensors, wearable devices, or cameras with special features such as thermal or depth sensors. In this paper, we propose a Computer Vision deep-learning based approach for human fall detection based on largely available standard RGB cameras. A typical limitation of this kind of approaches is the lack of generalization to unseen environments. This is due to the error generated during human detection and, more generally, due to the unavailability of large-scale datasets that specialize in fall detection problems with different environments and fall types. In this work, we mitigate these limitations with a general-purpose object detector trained using a virtual world dataset in addition to real-world images. Through extensive experimental evaluation, we verified that by training our models on synthetic images as well, we were able to improve their ability to generalize. Code to reproduce results is available at https://github.com/lorepas/fallen-people-detection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信