{"title":"利用低表面积碳纤维的电化学电容器","authors":"S. Lipka","doi":"10.1109/BCAA.1997.574111","DOIUrl":null,"url":null,"abstract":"The performance of electrochemical capacitors containing different commercial carbon fibers is reviewed. High specific capacitances (ca. 300 F/g) are obtained with low surface area carbon fiber (<1 m2/g) using a proprietary activation process. Capacitance is primarily achieved through pseudocapacitance resulting from surface functional groups. The performance of these devices is dependent on the type of carbon fiber, its carbon content, aspect ratio and microstructure. These devices can achieve high cycle life (ca. 100k) without significant loss in capacitance.","PeriodicalId":344507,"journal":{"name":"The Twelfth Annual Battery Conference on Applications and Advances","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Electrochemical capacitors utilizing low surface area carbon fiber\",\"authors\":\"S. Lipka\",\"doi\":\"10.1109/BCAA.1997.574111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The performance of electrochemical capacitors containing different commercial carbon fibers is reviewed. High specific capacitances (ca. 300 F/g) are obtained with low surface area carbon fiber (<1 m2/g) using a proprietary activation process. Capacitance is primarily achieved through pseudocapacitance resulting from surface functional groups. The performance of these devices is dependent on the type of carbon fiber, its carbon content, aspect ratio and microstructure. These devices can achieve high cycle life (ca. 100k) without significant loss in capacitance.\",\"PeriodicalId\":344507,\"journal\":{\"name\":\"The Twelfth Annual Battery Conference on Applications and Advances\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Twelfth Annual Battery Conference on Applications and Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BCAA.1997.574111\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Twelfth Annual Battery Conference on Applications and Advances","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BCAA.1997.574111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Electrochemical capacitors utilizing low surface area carbon fiber
The performance of electrochemical capacitors containing different commercial carbon fibers is reviewed. High specific capacitances (ca. 300 F/g) are obtained with low surface area carbon fiber (<1 m2/g) using a proprietary activation process. Capacitance is primarily achieved through pseudocapacitance resulting from surface functional groups. The performance of these devices is dependent on the type of carbon fiber, its carbon content, aspect ratio and microstructure. These devices can achieve high cycle life (ca. 100k) without significant loss in capacitance.