{"title":"采用遗传模糊规则选择的并行分布式模糊LQR控制器对起重机进行控制","authors":"M. Adeli, H. Zarabadipour, M. A. Shoorehdeli","doi":"10.1109/ICCIAUTOM.2011.6356689","DOIUrl":null,"url":null,"abstract":"Overhead crane is an industrial structure that is widely used in many harbors and factories. It is usually operated manually or by some conventional control methods. In this paper, we propose a hybrid controller includes both position regulation and anti-swing control. According to Takagi-Sugeno fuzzy model of an overhead crane and genetic algorithm, a fuzzy controller is designed with parallel distributed compensation and Linear Quadratic Regulation. Using genetic algorithm, important fuzzy rules are selected and so the number of rules decreased and design procedure need less computation and its computation needs less time. Further, the stability of the overhead crane with the parallel distributed fuzzy LQR controller is discussed. The stability analysis and control design problems is reduced to linear matrix inequality (LMI) problems. Simulation results illustrated the validity of the proposed parallel distributed fuzzy LQR control method and it was compared with a similar method parallel distributed fuzzy controller with same fuzzy rule set.","PeriodicalId":438427,"journal":{"name":"The 2nd International Conference on Control, Instrumentation and Automation","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Crane control via parallel distributed fuzzy LQR controller using genetic fuzzy rule selection\",\"authors\":\"M. Adeli, H. Zarabadipour, M. A. Shoorehdeli\",\"doi\":\"10.1109/ICCIAUTOM.2011.6356689\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Overhead crane is an industrial structure that is widely used in many harbors and factories. It is usually operated manually or by some conventional control methods. In this paper, we propose a hybrid controller includes both position regulation and anti-swing control. According to Takagi-Sugeno fuzzy model of an overhead crane and genetic algorithm, a fuzzy controller is designed with parallel distributed compensation and Linear Quadratic Regulation. Using genetic algorithm, important fuzzy rules are selected and so the number of rules decreased and design procedure need less computation and its computation needs less time. Further, the stability of the overhead crane with the parallel distributed fuzzy LQR controller is discussed. The stability analysis and control design problems is reduced to linear matrix inequality (LMI) problems. Simulation results illustrated the validity of the proposed parallel distributed fuzzy LQR control method and it was compared with a similar method parallel distributed fuzzy controller with same fuzzy rule set.\",\"PeriodicalId\":438427,\"journal\":{\"name\":\"The 2nd International Conference on Control, Instrumentation and Automation\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The 2nd International Conference on Control, Instrumentation and Automation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCIAUTOM.2011.6356689\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 2nd International Conference on Control, Instrumentation and Automation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCIAUTOM.2011.6356689","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Crane control via parallel distributed fuzzy LQR controller using genetic fuzzy rule selection
Overhead crane is an industrial structure that is widely used in many harbors and factories. It is usually operated manually or by some conventional control methods. In this paper, we propose a hybrid controller includes both position regulation and anti-swing control. According to Takagi-Sugeno fuzzy model of an overhead crane and genetic algorithm, a fuzzy controller is designed with parallel distributed compensation and Linear Quadratic Regulation. Using genetic algorithm, important fuzzy rules are selected and so the number of rules decreased and design procedure need less computation and its computation needs less time. Further, the stability of the overhead crane with the parallel distributed fuzzy LQR controller is discussed. The stability analysis and control design problems is reduced to linear matrix inequality (LMI) problems. Simulation results illustrated the validity of the proposed parallel distributed fuzzy LQR control method and it was compared with a similar method parallel distributed fuzzy controller with same fuzzy rule set.