个人观察的多变量Robust控制图表

E. T. Herdiani
{"title":"个人观察的多变量Robust控制图表","authors":"E. T. Herdiani","doi":"10.20956/JMSK.V15I2.5712","DOIUrl":null,"url":null,"abstract":"AbstractThe most widely used of control chart in multivariate control processing is control chart T2 Hotelling. There are 2 kinds of control chart T2 Hotelling, namely T2 Hotelling for group observation and T2 Hotelling  for individual observation. In this paper, discuss the control chart T2 Hotelling for individual observation. This control chart is used for monitoring of mean vector and sample of covariance matrix.   Mean vector and sample of covariance matrix are very sensitive with respect to extreme point (outliers). Therefore, it is needed  an estimator of mean vector and has a stocky population covariance matrix to the outliers data. One method that can be used to detect data that contains outliers is  Minimum Covariance Determinant (MCD). From the calculation results, obtained that  control chart T2 Hotelling by using Fast-MCD algorithm is more sensitive to detect outliers data  than  T2 Hotelling classically.Keyword: T2 Hotelling, Minimum Covariance Determinant (MCD), robust, outlier AbstrakBagan kendali yang  paling banyak digunakan dalam pengendalian proses secara multivariat adalah bagan kendali T2 Hotelling. Ada 2 jenis dari bagan kendali  Hotelling yaitu bagan kendali  Hotelling untuk pengamatan kelompok dan individual. Pada tulisan ini membahas bagan kendali  Hotelling untuk pengamatan individual. Bagan kendali ini digunakan untuk memonitor vektor  rata-rata dan matriks kovariansi sampel. Vektor rata-rata dan matriks kovariansi sampel sangat sensitif terhadap titik ekstrim (outliers). Oleh karena itu dibutuhkan estimator vektor rata-rata dan matriks kovariansi populasi yang kekar terhadap data outliers. Salah satu metode yang dapat digunakan untuk mendeteksi data yang mengandung outliers adalah Minimum Covariance Determinant (MCD). Dari hasil perhitungan diperoleh bahwa bagan kendali T2 Hotelling dengan algoritma Fast-MCD lebih sensitif mendeteksi data outliers daripada T2 Hotelling klasik.Kata Kunci: T2 Hotelling, Minimum Covariance Determinant (MCD), robust, outlier.","PeriodicalId":150527,"journal":{"name":"Jurnal Matematika Statistika dan Komputasi","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bagan Kendali Robust Multivariat untuk Pengamatan Individual\",\"authors\":\"E. T. Herdiani\",\"doi\":\"10.20956/JMSK.V15I2.5712\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"AbstractThe most widely used of control chart in multivariate control processing is control chart T2 Hotelling. There are 2 kinds of control chart T2 Hotelling, namely T2 Hotelling for group observation and T2 Hotelling  for individual observation. In this paper, discuss the control chart T2 Hotelling for individual observation. This control chart is used for monitoring of mean vector and sample of covariance matrix.   Mean vector and sample of covariance matrix are very sensitive with respect to extreme point (outliers). Therefore, it is needed  an estimator of mean vector and has a stocky population covariance matrix to the outliers data. One method that can be used to detect data that contains outliers is  Minimum Covariance Determinant (MCD). From the calculation results, obtained that  control chart T2 Hotelling by using Fast-MCD algorithm is more sensitive to detect outliers data  than  T2 Hotelling classically.Keyword: T2 Hotelling, Minimum Covariance Determinant (MCD), robust, outlier AbstrakBagan kendali yang  paling banyak digunakan dalam pengendalian proses secara multivariat adalah bagan kendali T2 Hotelling. Ada 2 jenis dari bagan kendali  Hotelling yaitu bagan kendali  Hotelling untuk pengamatan kelompok dan individual. Pada tulisan ini membahas bagan kendali  Hotelling untuk pengamatan individual. Bagan kendali ini digunakan untuk memonitor vektor  rata-rata dan matriks kovariansi sampel. Vektor rata-rata dan matriks kovariansi sampel sangat sensitif terhadap titik ekstrim (outliers). Oleh karena itu dibutuhkan estimator vektor rata-rata dan matriks kovariansi populasi yang kekar terhadap data outliers. Salah satu metode yang dapat digunakan untuk mendeteksi data yang mengandung outliers adalah Minimum Covariance Determinant (MCD). Dari hasil perhitungan diperoleh bahwa bagan kendali T2 Hotelling dengan algoritma Fast-MCD lebih sensitif mendeteksi data outliers daripada T2 Hotelling klasik.Kata Kunci: T2 Hotelling, Minimum Covariance Determinant (MCD), robust, outlier.\",\"PeriodicalId\":150527,\"journal\":{\"name\":\"Jurnal Matematika Statistika dan Komputasi\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Matematika Statistika dan Komputasi\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20956/JMSK.V15I2.5712\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Matematika Statistika dan Komputasi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20956/JMSK.V15I2.5712","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要在多变量控制处理中应用最广泛的控制图是T2霍特林控制图。控制图T2 Hotelling有2种,即群体观察的T2 Hotelling和个体观察的T2 Hotelling。本文讨论了控制图T2霍特林对个体观察的影响。该控制图用于监测均值向量和协方差矩阵的样本。协方差矩阵的均值向量和样本对极值点(异常值)非常敏感。因此,需要一个均值向量的估计量,并对离群数据有一个粗壮的总体协方差矩阵。一种可用于检测包含异常值的数据的方法是最小协方差行列式(MCD)。从计算结果来看,采用Fast-MCD算法的控制图T2 Hotelling比经典的T2 Hotelling对异常值数据的检测更敏感。关键词:T2酒店;最小协方差行行式(MCD);鲁棒性;Ada 2 jenis dari bagan kendali hotel telling yitu bagan kendali hotel telling untuk pengamatan kelompok dan个人。Pada tulisan - ini成员已经开始了一项新的研究。Bagan kendali ini digunakan untuk监视器矢量非比例矩阵kovariansi样本。向量成比例矩阵在样本中具有敏感的特征(异常值)。Oleh karena图分布估计向量的非均匀性-非均匀性矩阵kovarianpopulasyangkekar的数据异常值。用最小协方差行列式(MCD)分析离群值。dariil perhitungan diperoleh bahwa bagan kendali T2 hotel - telling kllasik算法Fast-MCD对数据离群值的敏感门限。Kata Kunci: T2 Hotelling,最小协方差行列式(MCD),稳健,异常值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bagan Kendali Robust Multivariat untuk Pengamatan Individual
AbstractThe most widely used of control chart in multivariate control processing is control chart T2 Hotelling. There are 2 kinds of control chart T2 Hotelling, namely T2 Hotelling for group observation and T2 Hotelling  for individual observation. In this paper, discuss the control chart T2 Hotelling for individual observation. This control chart is used for monitoring of mean vector and sample of covariance matrix.   Mean vector and sample of covariance matrix are very sensitive with respect to extreme point (outliers). Therefore, it is needed  an estimator of mean vector and has a stocky population covariance matrix to the outliers data. One method that can be used to detect data that contains outliers is  Minimum Covariance Determinant (MCD). From the calculation results, obtained that  control chart T2 Hotelling by using Fast-MCD algorithm is more sensitive to detect outliers data  than  T2 Hotelling classically.Keyword: T2 Hotelling, Minimum Covariance Determinant (MCD), robust, outlier AbstrakBagan kendali yang  paling banyak digunakan dalam pengendalian proses secara multivariat adalah bagan kendali T2 Hotelling. Ada 2 jenis dari bagan kendali  Hotelling yaitu bagan kendali  Hotelling untuk pengamatan kelompok dan individual. Pada tulisan ini membahas bagan kendali  Hotelling untuk pengamatan individual. Bagan kendali ini digunakan untuk memonitor vektor  rata-rata dan matriks kovariansi sampel. Vektor rata-rata dan matriks kovariansi sampel sangat sensitif terhadap titik ekstrim (outliers). Oleh karena itu dibutuhkan estimator vektor rata-rata dan matriks kovariansi populasi yang kekar terhadap data outliers. Salah satu metode yang dapat digunakan untuk mendeteksi data yang mengandung outliers adalah Minimum Covariance Determinant (MCD). Dari hasil perhitungan diperoleh bahwa bagan kendali T2 Hotelling dengan algoritma Fast-MCD lebih sensitif mendeteksi data outliers daripada T2 Hotelling klasik.Kata Kunci: T2 Hotelling, Minimum Covariance Determinant (MCD), robust, outlier.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信