MPC的部分共轭梯度和梯度投影联合求解器

O. Santin, V. Havlena
{"title":"MPC的部分共轭梯度和梯度投影联合求解器","authors":"O. Santin, V. Havlena","doi":"10.1109/CCA.2011.6044405","DOIUrl":null,"url":null,"abstract":"The objective of this paper is to present fast algorithm for large scale box constrained quadratic program which arises from linear model predictive control (MPC) with hard limits on the inputs. The presented algorithm uses the combination of the gradient projection method and the partial conjugate gradient method. The special structure of the MPC problem is exploited so that the conjugate gradient method converges in a few number of iterations and the algorithm well suitable for processes with thousands of inputs and small number of outputs is obtained.","PeriodicalId":208713,"journal":{"name":"2011 IEEE International Conference on Control Applications (CCA)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Combined partial conjugate gradient and gradient projection solver for MPC\",\"authors\":\"O. Santin, V. Havlena\",\"doi\":\"10.1109/CCA.2011.6044405\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The objective of this paper is to present fast algorithm for large scale box constrained quadratic program which arises from linear model predictive control (MPC) with hard limits on the inputs. The presented algorithm uses the combination of the gradient projection method and the partial conjugate gradient method. The special structure of the MPC problem is exploited so that the conjugate gradient method converges in a few number of iterations and the algorithm well suitable for processes with thousands of inputs and small number of outputs is obtained.\",\"PeriodicalId\":208713,\"journal\":{\"name\":\"2011 IEEE International Conference on Control Applications (CCA)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Conference on Control Applications (CCA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCA.2011.6044405\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on Control Applications (CCA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCA.2011.6044405","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

本文的目的是针对输入有硬性限制的线性模型预测控制(MPC)中出现的大规模盒约束二次规划问题,提出一种快速算法。该算法将梯度投影法与部分共轭梯度法相结合。利用MPC问题的特殊结构,使共轭梯度法迭代次数少,收敛性好,得到了适合于数千输入、少量输出过程的算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Combined partial conjugate gradient and gradient projection solver for MPC
The objective of this paper is to present fast algorithm for large scale box constrained quadratic program which arises from linear model predictive control (MPC) with hard limits on the inputs. The presented algorithm uses the combination of the gradient projection method and the partial conjugate gradient method. The special structure of the MPC problem is exploited so that the conjugate gradient method converges in a few number of iterations and the algorithm well suitable for processes with thousands of inputs and small number of outputs is obtained.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信