基于传感器中心的最优占空比节能空气污染监测

M. R. Chowdhury, S. De, N. Shukla, Ranendra N. Biswas
{"title":"基于传感器中心的最优占空比节能空气污染监测","authors":"M. R. Chowdhury, S. De, N. Shukla, Ranendra N. Biswas","doi":"10.1109/NCC.2018.8600133","DOIUrl":null,"url":null,"abstract":"Air pollution monitoring systems with energy-intensive sensors cannot afford to sample frequently in order to maximize time between successive recharges. In this paper, we propose an energy-efficient machine learning based sensor duty-cycling method for a sensor hub receiving data from the air-pollution sensors. In particular, we demonstrate that temporal correlation of pollutant concentration can be exploited to select optimum sampling period of an energy-intensive sensor to reduce sensing energy consumption without losing much information. Support Vector Regression is used to predict the missing samples during the period sensor is turned off.","PeriodicalId":121544,"journal":{"name":"2018 Twenty Fourth National Conference on Communications (NCC)","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Energy-Efficient Air Pollution Monitoring with Optimum Duty-Cycling on a Sensor Hub\",\"authors\":\"M. R. Chowdhury, S. De, N. Shukla, Ranendra N. Biswas\",\"doi\":\"10.1109/NCC.2018.8600133\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Air pollution monitoring systems with energy-intensive sensors cannot afford to sample frequently in order to maximize time between successive recharges. In this paper, we propose an energy-efficient machine learning based sensor duty-cycling method for a sensor hub receiving data from the air-pollution sensors. In particular, we demonstrate that temporal correlation of pollutant concentration can be exploited to select optimum sampling period of an energy-intensive sensor to reduce sensing energy consumption without losing much information. Support Vector Regression is used to predict the missing samples during the period sensor is turned off.\",\"PeriodicalId\":121544,\"journal\":{\"name\":\"2018 Twenty Fourth National Conference on Communications (NCC)\",\"volume\":\"102 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Twenty Fourth National Conference on Communications (NCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NCC.2018.8600133\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Twenty Fourth National Conference on Communications (NCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCC.2018.8600133","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

具有能源密集型传感器的空气污染监测系统无法承受频繁采样以最大化连续充电之间的时间间隔。在本文中,我们提出了一种节能的基于机器学习的传感器占空比方法,用于从空气污染传感器接收数据的传感器集线器。特别是,我们证明污染物浓度的时间相关性可以用来选择能量密集型传感器的最佳采样周期,以减少传感能量消耗,而不会丢失太多信息。支持向量回归用于预测传感器关闭期间缺失的样本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Energy-Efficient Air Pollution Monitoring with Optimum Duty-Cycling on a Sensor Hub
Air pollution monitoring systems with energy-intensive sensors cannot afford to sample frequently in order to maximize time between successive recharges. In this paper, we propose an energy-efficient machine learning based sensor duty-cycling method for a sensor hub receiving data from the air-pollution sensors. In particular, we demonstrate that temporal correlation of pollutant concentration can be exploited to select optimum sampling period of an energy-intensive sensor to reduce sensing energy consumption without losing much information. Support Vector Regression is used to predict the missing samples during the period sensor is turned off.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信