流体运动方程数值积分的Arakawa公式的SSE矢量化和GPU实现

Evren Yurtesen, M. Ropo, M. Aspnäs, J. Westerholm
{"title":"流体运动方程数值积分的Arakawa公式的SSE矢量化和GPU实现","authors":"Evren Yurtesen, M. Ropo, M. Aspnäs, J. Westerholm","doi":"10.1109/PDP.2011.80","DOIUrl":null,"url":null,"abstract":"The numerical method presented by Arakawa in 1966[3] implements a ?nite difference scheme of the Jacobian for the solution of the equation of motion for two-dimensional incompressible ?ows, which diminishes nonlinear computational instability and permits long-term numerical integrations. This paper presents an ef?cient implementation of Arakawa's formula using vectorized Streaming SIMD Extension (SSE) and Advanced Vector Extension (AVX) instructions. Additionally, we have improved the performance of memory access in the code. Performance measurements show that the vectorizedimplementation is close to two times more ef?cient compared to an implementation without SSE. The AVX version will in the near future further improve the vectorized performance with an estimated factor of up to 1.8. Finally we compare our results to an implementation on a general purpose graphics processor (GPGPU) and to auto-vectorization by two compilers.","PeriodicalId":341803,"journal":{"name":"2011 19th International Euromicro Conference on Parallel, Distributed and Network-Based Processing","volume":"7 11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"SSE Vectorized and GPU Implementations of Arakawa's Formula for Numerical Integration of Equations of Fluid Motion\",\"authors\":\"Evren Yurtesen, M. Ropo, M. Aspnäs, J. Westerholm\",\"doi\":\"10.1109/PDP.2011.80\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The numerical method presented by Arakawa in 1966[3] implements a ?nite difference scheme of the Jacobian for the solution of the equation of motion for two-dimensional incompressible ?ows, which diminishes nonlinear computational instability and permits long-term numerical integrations. This paper presents an ef?cient implementation of Arakawa's formula using vectorized Streaming SIMD Extension (SSE) and Advanced Vector Extension (AVX) instructions. Additionally, we have improved the performance of memory access in the code. Performance measurements show that the vectorizedimplementation is close to two times more ef?cient compared to an implementation without SSE. The AVX version will in the near future further improve the vectorized performance with an estimated factor of up to 1.8. Finally we compare our results to an implementation on a general purpose graphics processor (GPGPU) and to auto-vectorization by two compilers.\",\"PeriodicalId\":341803,\"journal\":{\"name\":\"2011 19th International Euromicro Conference on Parallel, Distributed and Network-Based Processing\",\"volume\":\"7 11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-02-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 19th International Euromicro Conference on Parallel, Distributed and Network-Based Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PDP.2011.80\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 19th International Euromicro Conference on Parallel, Distributed and Network-Based Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PDP.2011.80","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

Arakawa在1966年提出的数值方法实现了求解二维不可压缩流体运动方程的雅可比矩阵的差分格式,减少了非线性计算的不稳定性,并允许长期的数值积分。本文提出了一种方法。使用向量化流SIMD扩展(SSE)和高级矢量扩展(AVX)指令的Arakawa公式的客户端实现。此外,我们还改进了代码中内存访问的性能。性能测量表明,矢量化实现的效率提高了近两倍。与没有SSE的实现相比。AVX版本将在不久的将来进一步提高矢量化性能,估计系数高达1.8。最后,我们将我们的结果与通用图形处理器(GPGPU)上的实现和两个编译器的自动矢量化进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SSE Vectorized and GPU Implementations of Arakawa's Formula for Numerical Integration of Equations of Fluid Motion
The numerical method presented by Arakawa in 1966[3] implements a ?nite difference scheme of the Jacobian for the solution of the equation of motion for two-dimensional incompressible ?ows, which diminishes nonlinear computational instability and permits long-term numerical integrations. This paper presents an ef?cient implementation of Arakawa's formula using vectorized Streaming SIMD Extension (SSE) and Advanced Vector Extension (AVX) instructions. Additionally, we have improved the performance of memory access in the code. Performance measurements show that the vectorizedimplementation is close to two times more ef?cient compared to an implementation without SSE. The AVX version will in the near future further improve the vectorized performance with an estimated factor of up to 1.8. Finally we compare our results to an implementation on a general purpose graphics processor (GPGPU) and to auto-vectorization by two compilers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信