会话推荐的侧信息异构图

Chendi Xue, Xinyao Wang, Yu Zhou, Ke Ding, Jian Zhang, Rita Brugarolas Brufau, Eric Anderson
{"title":"会话推荐的侧信息异构图","authors":"Chendi Xue, Xinyao Wang, Yu Zhou, Ke Ding, Jian Zhang, Rita Brugarolas Brufau, Eric Anderson","doi":"10.1145/3556702.3556852","DOIUrl":null,"url":null,"abstract":"In this paper we present Side Information Heterogeneous Graph for Session Recommender – SIHG4SR, our solution for RecSys Challenge 2022[3], a competition organized by Dressipi for fashion recommendation. Dressipi provides data about user session, purchased items and content features to predict which fashion item will be bought. Our solution leverages side information and heterogeneous graph, deep dives into the data and engineers new features, employs two-stage training and multi-level ensemble strategy, and enhances the performance with fine tuning and hyper-parameter tuning. Finally SIHG4SR outperforms the state-of-art baselines, getting an MRR score 0.20762 and ranked 4th position on final leaderboard(team name ”MooreWins”). We published our solution at github1.","PeriodicalId":141185,"journal":{"name":"Proceedings of the Recommender Systems Challenge 2022","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SIHG4SR: Side Information Heterogeneous Graph for Session Recommender\",\"authors\":\"Chendi Xue, Xinyao Wang, Yu Zhou, Ke Ding, Jian Zhang, Rita Brugarolas Brufau, Eric Anderson\",\"doi\":\"10.1145/3556702.3556852\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we present Side Information Heterogeneous Graph for Session Recommender – SIHG4SR, our solution for RecSys Challenge 2022[3], a competition organized by Dressipi for fashion recommendation. Dressipi provides data about user session, purchased items and content features to predict which fashion item will be bought. Our solution leverages side information and heterogeneous graph, deep dives into the data and engineers new features, employs two-stage training and multi-level ensemble strategy, and enhances the performance with fine tuning and hyper-parameter tuning. Finally SIHG4SR outperforms the state-of-art baselines, getting an MRR score 0.20762 and ranked 4th position on final leaderboard(team name ”MooreWins”). We published our solution at github1.\",\"PeriodicalId\":141185,\"journal\":{\"name\":\"Proceedings of the Recommender Systems Challenge 2022\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Recommender Systems Challenge 2022\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3556702.3556852\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Recommender Systems Challenge 2022","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3556702.3556852","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了会话推荐器的侧信息异构图- SIHG4SR,这是我们为RecSys Challenge 2022[3]提供的解决方案,RecSys Challenge 2022是由Dressipi组织的时尚推荐比赛。Dressipi提供有关用户会话、购买物品和内容特征的数据,以预测将购买哪些时尚物品。我们的解决方案利用侧信息和异构图,深入挖掘数据和工程师的新特征,采用两阶段训练和多级集成策略,并通过微调和超参数调优来提高性能。最终,SIHG4SR超越了最先进的基线,MRR得分为0.20762,在最终排行榜上排名第四(战队名称为“MooreWins”)。我们在github1发布了我们的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SIHG4SR: Side Information Heterogeneous Graph for Session Recommender
In this paper we present Side Information Heterogeneous Graph for Session Recommender – SIHG4SR, our solution for RecSys Challenge 2022[3], a competition organized by Dressipi for fashion recommendation. Dressipi provides data about user session, purchased items and content features to predict which fashion item will be bought. Our solution leverages side information and heterogeneous graph, deep dives into the data and engineers new features, employs two-stage training and multi-level ensemble strategy, and enhances the performance with fine tuning and hyper-parameter tuning. Finally SIHG4SR outperforms the state-of-art baselines, getting an MRR score 0.20762 and ranked 4th position on final leaderboard(team name ”MooreWins”). We published our solution at github1.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信