基于Copulae的多元稳定分布中的贝叶斯推断

E. Tsionas
{"title":"基于Copulae的多元稳定分布中的贝叶斯推断","authors":"E. Tsionas","doi":"10.2139/ssrn.2214612","DOIUrl":null,"url":null,"abstract":"In this paper we take up Bayesian inference in multivariate stable distributions through innovative multivariate stable copulae. The problem that the characteristic function is defined through a difficult object, the spectral measure is completely bypassed by our approach. The new methods are applied to major exchange rates with encouraging results. The copula-based technique is based on non-parametric margins (both data-estimated as well as Dirichlet process priors) and we compare with a multivariate stable copula whose margins can be normal, Student-t or univariate stable.","PeriodicalId":151990,"journal":{"name":"ERN: Foreign Exchange Models (Topic)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bayesian Inference in Multivariate Stable Distributions Using Copulae\",\"authors\":\"E. Tsionas\",\"doi\":\"10.2139/ssrn.2214612\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we take up Bayesian inference in multivariate stable distributions through innovative multivariate stable copulae. The problem that the characteristic function is defined through a difficult object, the spectral measure is completely bypassed by our approach. The new methods are applied to major exchange rates with encouraging results. The copula-based technique is based on non-parametric margins (both data-estimated as well as Dirichlet process priors) and we compare with a multivariate stable copula whose margins can be normal, Student-t or univariate stable.\",\"PeriodicalId\":151990,\"journal\":{\"name\":\"ERN: Foreign Exchange Models (Topic)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-02-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ERN: Foreign Exchange Models (Topic)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.2214612\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Foreign Exchange Models (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2214612","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文通过创新的多元稳定联公式对多元稳定分布中的贝叶斯推理进行了研究。我们的方法完全绕过了特征函数是通过一个困难的目标来定义的问题。新方法应用于主要汇率,取得了令人鼓舞的结果。基于copula的技术基于非参数边缘(包括数据估计和Dirichlet过程先验),我们与多元稳定的copula进行比较,其边缘可以是正态的,Student-t或单变量稳定的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bayesian Inference in Multivariate Stable Distributions Using Copulae
In this paper we take up Bayesian inference in multivariate stable distributions through innovative multivariate stable copulae. The problem that the characteristic function is defined through a difficult object, the spectral measure is completely bypassed by our approach. The new methods are applied to major exchange rates with encouraging results. The copula-based technique is based on non-parametric margins (both data-estimated as well as Dirichlet process priors) and we compare with a multivariate stable copula whose margins can be normal, Student-t or univariate stable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信