将逆转录病毒理论与遗传算法相结合,构建一种新的自然启发型元启发式算法求解实参数函数优化问题

R. S. Moreira, O. N. Teixeira, R. C. L. Oliveira
{"title":"将逆转录病毒理论与遗传算法相结合,构建一种新的自然启发型元启发式算法求解实参数函数优化问题","authors":"R. S. Moreira, O. N. Teixeira, R. C. L. Oliveira","doi":"10.17562/pb-42-7","DOIUrl":null,"url":null,"abstract":"This paper describes the development of a new hybrid meta-heuristic of optimization based on a viral lifecycle, specifically the retroviruses (the nature's swiftest evolvers'), called Retroviral Iterative Genetic Algorithm (RIGA). This algorithm uses Genetics Algorithms (GA) structures with features of retroviral replication, providing a great genetic diversity, confirmed by better results achieved by RIGA comparing with GA applied to some Real-Valued Benchmarking Functions.","PeriodicalId":174618,"journal":{"name":"2010 10th International Conference on Hybrid Intelligent Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mixing theory of retroviruses and Genetic Algorithm to build a new nature-inspired meta-heuristic for real-parameter function optimization problems\",\"authors\":\"R. S. Moreira, O. N. Teixeira, R. C. L. Oliveira\",\"doi\":\"10.17562/pb-42-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes the development of a new hybrid meta-heuristic of optimization based on a viral lifecycle, specifically the retroviruses (the nature's swiftest evolvers'), called Retroviral Iterative Genetic Algorithm (RIGA). This algorithm uses Genetics Algorithms (GA) structures with features of retroviral replication, providing a great genetic diversity, confirmed by better results achieved by RIGA comparing with GA applied to some Real-Valued Benchmarking Functions.\",\"PeriodicalId\":174618,\"journal\":{\"name\":\"2010 10th International Conference on Hybrid Intelligent Systems\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 10th International Conference on Hybrid Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17562/pb-42-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 10th International Conference on Hybrid Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17562/pb-42-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文描述了一种新的基于病毒生命周期的混合启发式优化方法,特别是逆转录病毒(自然界最快的进化者),称为逆转录病毒迭代遗传算法(RIGA)。该算法采用具有逆转录病毒复制特征的遗传算法(genetic Algorithms, GA)结构,提供了很大的遗传多样性,与应用于某些实值基准函数的遗传算法相比,RIGA算法获得了更好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mixing theory of retroviruses and Genetic Algorithm to build a new nature-inspired meta-heuristic for real-parameter function optimization problems
This paper describes the development of a new hybrid meta-heuristic of optimization based on a viral lifecycle, specifically the retroviruses (the nature's swiftest evolvers'), called Retroviral Iterative Genetic Algorithm (RIGA). This algorithm uses Genetics Algorithms (GA) structures with features of retroviral replication, providing a great genetic diversity, confirmed by better results achieved by RIGA comparing with GA applied to some Real-Valued Benchmarking Functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信