内轴子集的稳定性和同伦

F. Chazal, A. Lieutier
{"title":"内轴子集的稳定性和同伦","authors":"F. Chazal, A. Lieutier","doi":"10.2312/SM.20041396","DOIUrl":null,"url":null,"abstract":"Medial Axis is known to be unstable for non smooth objects. For an open set <i>O</i>, we define the Weak Feature Size, wfs, minimum distance between <i>O</i><sup>c</sup> and the critical points of the function distance to <i>O</i><sup>c</sup>. We introduce the \"Lambda-Medial Axis\" of <i>O</i>, Mλ, a subset of the Medial Axis of <i>O</i> which captures the Homotopy type of <i>O</i> when λ < wfs. We show that, at least for some \"regular\" values of λ, M<inf>λ</inf> remains stable under Hausdorff distance perturbations of <i>O</i><sup>c</sup>.","PeriodicalId":405863,"journal":{"name":"ACM Symposium on Solid Modeling and Applications","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"47","resultStr":"{\"title\":\"Stability and homotopy of a subset of the medial axis\",\"authors\":\"F. Chazal, A. Lieutier\",\"doi\":\"10.2312/SM.20041396\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Medial Axis is known to be unstable for non smooth objects. For an open set <i>O</i>, we define the Weak Feature Size, wfs, minimum distance between <i>O</i><sup>c</sup> and the critical points of the function distance to <i>O</i><sup>c</sup>. We introduce the \\\"Lambda-Medial Axis\\\" of <i>O</i>, Mλ, a subset of the Medial Axis of <i>O</i> which captures the Homotopy type of <i>O</i> when λ < wfs. We show that, at least for some \\\"regular\\\" values of λ, M<inf>λ</inf> remains stable under Hausdorff distance perturbations of <i>O</i><sup>c</sup>.\",\"PeriodicalId\":405863,\"journal\":{\"name\":\"ACM Symposium on Solid Modeling and Applications\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-06-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"47\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Symposium on Solid Modeling and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2312/SM.20041396\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Symposium on Solid Modeling and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2312/SM.20041396","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 47

摘要

众所周知,对于非光滑物体,中轴线是不稳定的。对于开集O,我们定义了弱特征大小wfs, Oc之间的最小距离和到Oc的函数距离的临界点。我们引入了O, Mλ的“λ -中轴”,它是O的中轴的一个子集,当λ < wfs时,它捕获了O的同伦类型。我们证明,至少对于λ的某些“规则”值,Mλ在Oc的Hausdorff距离扰动下保持稳定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stability and homotopy of a subset of the medial axis
Medial Axis is known to be unstable for non smooth objects. For an open set O, we define the Weak Feature Size, wfs, minimum distance between Oc and the critical points of the function distance to Oc. We introduce the "Lambda-Medial Axis" of O, Mλ, a subset of the Medial Axis of O which captures the Homotopy type of O when λ < wfs. We show that, at least for some "regular" values of λ, Mλ remains stable under Hausdorff distance perturbations of Oc.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信