并行处理的事件序列分割

László Kovács, Dávid Polonkai
{"title":"并行处理的事件序列分割","authors":"László Kovács, Dávid Polonkai","doi":"10.32968/psaie.2022.2.5.","DOIUrl":null,"url":null,"abstract":"The robotic process mining focuses on the analysis of historical process sequences in order to build up a process model for the investigated field. One of the main tasks in robotic process mining is the construction of process schema for the input sequences. Usual methods are able to generate models using only baseline graph structures. In order to support high level structures like parallelism, the input event sequence structure must support additional attributes on the events. This paper presents a novel approach on sequence segmentation providing an intermediate graph structure which can be used to mine complex graph patterns. The tested prototype system contains a Python-based implementation of the proposed algorithm. In the paper, some tests are shown to illustrate the suitability of the proposed model.","PeriodicalId":117509,"journal":{"name":"Production Systems and Information Engineering","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Event sequence segmentation for parallel processes\",\"authors\":\"László Kovács, Dávid Polonkai\",\"doi\":\"10.32968/psaie.2022.2.5.\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The robotic process mining focuses on the analysis of historical process sequences in order to build up a process model for the investigated field. One of the main tasks in robotic process mining is the construction of process schema for the input sequences. Usual methods are able to generate models using only baseline graph structures. In order to support high level structures like parallelism, the input event sequence structure must support additional attributes on the events. This paper presents a novel approach on sequence segmentation providing an intermediate graph structure which can be used to mine complex graph patterns. The tested prototype system contains a Python-based implementation of the proposed algorithm. In the paper, some tests are shown to illustrate the suitability of the proposed model.\",\"PeriodicalId\":117509,\"journal\":{\"name\":\"Production Systems and Information Engineering\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Production Systems and Information Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.32968/psaie.2022.2.5.\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Production Systems and Information Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.32968/psaie.2022.2.5.","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

机器人过程挖掘侧重于对历史过程序列的分析,以建立研究领域的过程模型。机器人过程挖掘的主要任务之一是为输入序列构建过程模式。通常的方法只能使用基线图结构来生成模型。为了支持像并行这样的高级结构,输入事件序列结构必须支持事件的附加属性。本文提出了一种新的序列分割方法,该方法提供了一种中间图结构,可用于复杂图模式的挖掘。测试的原型系统包含一个基于python的算法实现。在本文中,一些测试表明了所提出的模型的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Event sequence segmentation for parallel processes
The robotic process mining focuses on the analysis of historical process sequences in order to build up a process model for the investigated field. One of the main tasks in robotic process mining is the construction of process schema for the input sequences. Usual methods are able to generate models using only baseline graph structures. In order to support high level structures like parallelism, the input event sequence structure must support additional attributes on the events. This paper presents a novel approach on sequence segmentation providing an intermediate graph structure which can be used to mine complex graph patterns. The tested prototype system contains a Python-based implementation of the proposed algorithm. In the paper, some tests are shown to illustrate the suitability of the proposed model.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信