寻找科学软件的变质关系

Xuanyi Lin, Zedong Peng, Nan Niu, Wentao Wang, Hui Liu
{"title":"寻找科学软件的变质关系","authors":"Xuanyi Lin, Zedong Peng, Nan Niu, Wentao Wang, Hui Liu","doi":"10.1109/ICSE-Companion52605.2021.00118","DOIUrl":null,"url":null,"abstract":"Metamorphic testing uncovers defects by checking whether a relation holds among multiple software executions. These relations are known as metamorphic relations (MRs). For scientific software operating in a large multi-parameter input space, identifying MRs that determine the simultaneous changes among multiple variables is challenging. In this poster, we propose a fully automatic approach to classifying input and output variables from scientific software’s user manual, mining these variables’ associations from the user forum to generate MRs, and validating the MRs with existing regression tests. Preliminary results of our end-to-end MR support for the Storm Water Management Model (SWMM) are reported.","PeriodicalId":136929,"journal":{"name":"2021 IEEE/ACM 43rd International Conference on Software Engineering: Companion Proceedings (ICSE-Companion)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Finding Metamorphic Relations for Scientific Software\",\"authors\":\"Xuanyi Lin, Zedong Peng, Nan Niu, Wentao Wang, Hui Liu\",\"doi\":\"10.1109/ICSE-Companion52605.2021.00118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Metamorphic testing uncovers defects by checking whether a relation holds among multiple software executions. These relations are known as metamorphic relations (MRs). For scientific software operating in a large multi-parameter input space, identifying MRs that determine the simultaneous changes among multiple variables is challenging. In this poster, we propose a fully automatic approach to classifying input and output variables from scientific software’s user manual, mining these variables’ associations from the user forum to generate MRs, and validating the MRs with existing regression tests. Preliminary results of our end-to-end MR support for the Storm Water Management Model (SWMM) are reported.\",\"PeriodicalId\":136929,\"journal\":{\"name\":\"2021 IEEE/ACM 43rd International Conference on Software Engineering: Companion Proceedings (ICSE-Companion)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE/ACM 43rd International Conference on Software Engineering: Companion Proceedings (ICSE-Companion)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSE-Companion52605.2021.00118\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE/ACM 43rd International Conference on Software Engineering: Companion Proceedings (ICSE-Companion)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSE-Companion52605.2021.00118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

变形测试通过检查多个软件执行之间的关系是否成立来发现缺陷。这些关系被称为变质关系(MRs)。对于在大型多参数输入空间中运行的科学软件,识别确定多个变量之间同时变化的MRs是具有挑战性的。在这张海报中,我们提出了一种全自动的方法,从科学软件的用户手册中对输入和输出变量进行分类,从用户论坛中挖掘这些变量的关联以生成MRs,并用现有的回归测试验证MRs。我们报告了端到端MR对雨水管理模式(SWMM)支持的初步结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Finding Metamorphic Relations for Scientific Software
Metamorphic testing uncovers defects by checking whether a relation holds among multiple software executions. These relations are known as metamorphic relations (MRs). For scientific software operating in a large multi-parameter input space, identifying MRs that determine the simultaneous changes among multiple variables is challenging. In this poster, we propose a fully automatic approach to classifying input and output variables from scientific software’s user manual, mining these variables’ associations from the user forum to generate MRs, and validating the MRs with existing regression tests. Preliminary results of our end-to-end MR support for the Storm Water Management Model (SWMM) are reported.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信