{"title":"用于印刷细、长导电浆料的拱形结构增强电镀钢板","authors":"Pi-Hsun Chen, Che-Hsin Lin","doi":"10.1109/MEMSYS.2015.7050941","DOIUrl":null,"url":null,"abstract":"This study presents an MEMS-based stencil reinforced with arch structures and a surrounding buffer reservoir for printing conductive paste of fine and long lines. The developed reinforced stencil successfully solves the problems came with the conventional stencil structure including limited printable line width and ease of fracture. A novel process was developed to fabricate a thin yet robust electroplated stencil by using two AZ4620 layers and one SU-8 layer as the electroplating molds. A precise stencil with a long and high-density line structure can be produced with the developed method. The printing results show that the developed stencil is capable of printing parallel lines of 20 μm in pitch. The printable length of the fine parallel lines is longer than 10 mm with the arch structure reinforced stencil. In addition, the developed stencil is capable of printing closed ring patterns with small pitch, which is not possible to be printed using conventional stencil or screen printing technologies. The MEMS-based stencil developed in the present study will give substantial impact on the paste printing technologies.","PeriodicalId":337894,"journal":{"name":"2015 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Electroplated stencil reinforced with arch structures for printing fine and long conductive paste\",\"authors\":\"Pi-Hsun Chen, Che-Hsin Lin\",\"doi\":\"10.1109/MEMSYS.2015.7050941\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study presents an MEMS-based stencil reinforced with arch structures and a surrounding buffer reservoir for printing conductive paste of fine and long lines. The developed reinforced stencil successfully solves the problems came with the conventional stencil structure including limited printable line width and ease of fracture. A novel process was developed to fabricate a thin yet robust electroplated stencil by using two AZ4620 layers and one SU-8 layer as the electroplating molds. A precise stencil with a long and high-density line structure can be produced with the developed method. The printing results show that the developed stencil is capable of printing parallel lines of 20 μm in pitch. The printable length of the fine parallel lines is longer than 10 mm with the arch structure reinforced stencil. In addition, the developed stencil is capable of printing closed ring patterns with small pitch, which is not possible to be printed using conventional stencil or screen printing technologies. The MEMS-based stencil developed in the present study will give substantial impact on the paste printing technologies.\",\"PeriodicalId\":337894,\"journal\":{\"name\":\"2015 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MEMSYS.2015.7050941\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMSYS.2015.7050941","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Electroplated stencil reinforced with arch structures for printing fine and long conductive paste
This study presents an MEMS-based stencil reinforced with arch structures and a surrounding buffer reservoir for printing conductive paste of fine and long lines. The developed reinforced stencil successfully solves the problems came with the conventional stencil structure including limited printable line width and ease of fracture. A novel process was developed to fabricate a thin yet robust electroplated stencil by using two AZ4620 layers and one SU-8 layer as the electroplating molds. A precise stencil with a long and high-density line structure can be produced with the developed method. The printing results show that the developed stencil is capable of printing parallel lines of 20 μm in pitch. The printable length of the fine parallel lines is longer than 10 mm with the arch structure reinforced stencil. In addition, the developed stencil is capable of printing closed ring patterns with small pitch, which is not possible to be printed using conventional stencil or screen printing technologies. The MEMS-based stencil developed in the present study will give substantial impact on the paste printing technologies.