{"title":"k-PathA: k最短路径算法","authors":"Alexander Ullrich, C. Forst","doi":"10.1109/HIBI.2009.21","DOIUrl":null,"url":null,"abstract":"One important aspect of computational systems biology includes the identification and analysis of functional response networks within large biochemical networks. These functional response networks represent the response of a biological system under a particular experimental condition which can be used to pinpoint critical biological processes.For this purpose, we have developed a novel algorithm to calculate response networks as scored/weighted sub-graphs spanned by k-shortest simple (loop free) paths. The k-shortest simple path algorithm is based on a forward/backward chaining approach synchronized between pairs of processors. The algorithm scales linear with the number of processors used. The algorithm implementation is using a Linux cluster platform, MPI lam and mpiJava messaging as well as the Java language for the application.The algorithm is performed on a hybrid human network consisting of 45,041 nodes and 438,567 interactions together with gene expression information obtained from human cell-lines infected by influenza virus. Its response networks show the early innate immune response and virus triggered processes within human epithelial cells. Especially under the imminent threat of a pandemic caused by novel influenza strains, such as the current H1N1 strain, these analyses are crucial for a comprehensive understanding of molecular processes during early phases of infection. Such a systems level understanding may aid in the identification of therapeutic markers and in drug development for diagnosis and finally prevention of a potentially dangerous disease.","PeriodicalId":403061,"journal":{"name":"2009 International Workshop on High Performance Computational Systems Biology","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"k-PathA: k-shortest Path Algorithm\",\"authors\":\"Alexander Ullrich, C. Forst\",\"doi\":\"10.1109/HIBI.2009.21\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"One important aspect of computational systems biology includes the identification and analysis of functional response networks within large biochemical networks. These functional response networks represent the response of a biological system under a particular experimental condition which can be used to pinpoint critical biological processes.For this purpose, we have developed a novel algorithm to calculate response networks as scored/weighted sub-graphs spanned by k-shortest simple (loop free) paths. The k-shortest simple path algorithm is based on a forward/backward chaining approach synchronized between pairs of processors. The algorithm scales linear with the number of processors used. The algorithm implementation is using a Linux cluster platform, MPI lam and mpiJava messaging as well as the Java language for the application.The algorithm is performed on a hybrid human network consisting of 45,041 nodes and 438,567 interactions together with gene expression information obtained from human cell-lines infected by influenza virus. Its response networks show the early innate immune response and virus triggered processes within human epithelial cells. Especially under the imminent threat of a pandemic caused by novel influenza strains, such as the current H1N1 strain, these analyses are crucial for a comprehensive understanding of molecular processes during early phases of infection. Such a systems level understanding may aid in the identification of therapeutic markers and in drug development for diagnosis and finally prevention of a potentially dangerous disease.\",\"PeriodicalId\":403061,\"journal\":{\"name\":\"2009 International Workshop on High Performance Computational Systems Biology\",\"volume\":\"72 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 International Workshop on High Performance Computational Systems Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HIBI.2009.21\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Workshop on High Performance Computational Systems Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HIBI.2009.21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
One important aspect of computational systems biology includes the identification and analysis of functional response networks within large biochemical networks. These functional response networks represent the response of a biological system under a particular experimental condition which can be used to pinpoint critical biological processes.For this purpose, we have developed a novel algorithm to calculate response networks as scored/weighted sub-graphs spanned by k-shortest simple (loop free) paths. The k-shortest simple path algorithm is based on a forward/backward chaining approach synchronized between pairs of processors. The algorithm scales linear with the number of processors used. The algorithm implementation is using a Linux cluster platform, MPI lam and mpiJava messaging as well as the Java language for the application.The algorithm is performed on a hybrid human network consisting of 45,041 nodes and 438,567 interactions together with gene expression information obtained from human cell-lines infected by influenza virus. Its response networks show the early innate immune response and virus triggered processes within human epithelial cells. Especially under the imminent threat of a pandemic caused by novel influenza strains, such as the current H1N1 strain, these analyses are crucial for a comprehensive understanding of molecular processes during early phases of infection. Such a systems level understanding may aid in the identification of therapeutic markers and in drug development for diagnosis and finally prevention of a potentially dangerous disease.