{"title":"音频的近场定位:最大似然方法","authors":"J. Jensen, M. G. Christensen","doi":"10.5281/ZENODO.43840","DOIUrl":null,"url":null,"abstract":"Localization of audio sources using microphone arrays has been an important research problem for more than two decades. Many traditional methods for solving the problem are based on a two-stage procedure: first, information about the audio source, such as time differences-of-arrival (TDOAs) and gain ratios-of-arrival (GROAs) between microphones is estimated, and, second, this knowledge is used to localize the audio source. These methods often have a low computational complexity, but this comes at the cost of a limited estimation accuracy. Therefore, we propose a new localization approach, where the desired signal is modeled using TDOAs and GROAs, which are determined by the source location. This facilitates the derivation of one-stage, maximum likelihood methods under a white Gaussian noise assumption that is applicable in both near- and far-field scenarios. Simulations show that the proposed method is statistically efficient and outperforms state-of-the-art estimators in most scenarios, involving both synthetic and real data.","PeriodicalId":198408,"journal":{"name":"2014 22nd European Signal Processing Conference (EUSIPCO)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Near-field localization of audio: A maximum likelihood approach\",\"authors\":\"J. Jensen, M. G. Christensen\",\"doi\":\"10.5281/ZENODO.43840\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Localization of audio sources using microphone arrays has been an important research problem for more than two decades. Many traditional methods for solving the problem are based on a two-stage procedure: first, information about the audio source, such as time differences-of-arrival (TDOAs) and gain ratios-of-arrival (GROAs) between microphones is estimated, and, second, this knowledge is used to localize the audio source. These methods often have a low computational complexity, but this comes at the cost of a limited estimation accuracy. Therefore, we propose a new localization approach, where the desired signal is modeled using TDOAs and GROAs, which are determined by the source location. This facilitates the derivation of one-stage, maximum likelihood methods under a white Gaussian noise assumption that is applicable in both near- and far-field scenarios. Simulations show that the proposed method is statistically efficient and outperforms state-of-the-art estimators in most scenarios, involving both synthetic and real data.\",\"PeriodicalId\":198408,\"journal\":{\"name\":\"2014 22nd European Signal Processing Conference (EUSIPCO)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 22nd European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5281/ZENODO.43840\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 22nd European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5281/ZENODO.43840","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Near-field localization of audio: A maximum likelihood approach
Localization of audio sources using microphone arrays has been an important research problem for more than two decades. Many traditional methods for solving the problem are based on a two-stage procedure: first, information about the audio source, such as time differences-of-arrival (TDOAs) and gain ratios-of-arrival (GROAs) between microphones is estimated, and, second, this knowledge is used to localize the audio source. These methods often have a low computational complexity, but this comes at the cost of a limited estimation accuracy. Therefore, we propose a new localization approach, where the desired signal is modeled using TDOAs and GROAs, which are determined by the source location. This facilitates the derivation of one-stage, maximum likelihood methods under a white Gaussian noise assumption that is applicable in both near- and far-field scenarios. Simulations show that the proposed method is statistically efficient and outperforms state-of-the-art estimators in most scenarios, involving both synthetic and real data.