IMS微震监测系统过电压损坏的解决方案

Chen Ruxiu, Li Hua
{"title":"IMS微震监测系统过电压损坏的解决方案","authors":"Chen Ruxiu, Li Hua","doi":"10.11648/J.IJMEA.20180604.12","DOIUrl":null,"url":null,"abstract":"With the further development of digitized mine system construction, various kinds of communication,information,automatic and intelligent electronic equipment are widely used in mines. Due to the harsh underground environment of domestic (China) mines, various faults of electronic equipment occur frequently, such as dampness, dust pollution, burn damage, mechanical damage. This makes the system can not run stably and reliably. Especially the phenomenon of burning damage of electronic equipment. It is often large area damage when it happens, which seriously affects the safety production of enterprises. The IMS equipment of microseismic monitoring system that installed in Shizhuyuan Mine was burning damaged many times. Through the in-depth analysis and diagnosis of the failure of the IMS burning module and the overall microseismic monitoring system underground chamber, the fault (which is the system overvoltage) and its causes are found out. According to the reality condition of Shizhuyuan mine that how to prevent the overvoltage damage is systematic analysis and improvement. Than adopt effective measure and methods such as: prevention of overvoltage generation, cut off the intrusion pathway of overvoltage, choosing the surge protector reasonably with the insulation level of the system, switch to the right power supply plan and power supply facilities. These protective measures and methods comprehensively protect the safety of microseismic monitoring system equipment. After that, the microseismic monitoring system is successfully protected and no longer burned down. It successfully solves the problem of equipment burning damage of microseismic monitoring system, provides reliable guarantee for mine safety production. Shizhuyuan mine is a typical underground mining metal ore in China, the successfully solution of overvoltage damage provides a good demonstration for how to prevent mine electronic equipment underground from burning damage, It also provides more standardized and accurate requirements for the way and the protection of power supply system, and the laying of lines for a new projects.","PeriodicalId":398842,"journal":{"name":"International Journal of Mechanical Engineering and Applications","volume":"101 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Solution of the Overvoltage Damage for IMS’s Microseismic Monitoring System\",\"authors\":\"Chen Ruxiu, Li Hua\",\"doi\":\"10.11648/J.IJMEA.20180604.12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the further development of digitized mine system construction, various kinds of communication,information,automatic and intelligent electronic equipment are widely used in mines. Due to the harsh underground environment of domestic (China) mines, various faults of electronic equipment occur frequently, such as dampness, dust pollution, burn damage, mechanical damage. This makes the system can not run stably and reliably. Especially the phenomenon of burning damage of electronic equipment. It is often large area damage when it happens, which seriously affects the safety production of enterprises. The IMS equipment of microseismic monitoring system that installed in Shizhuyuan Mine was burning damaged many times. Through the in-depth analysis and diagnosis of the failure of the IMS burning module and the overall microseismic monitoring system underground chamber, the fault (which is the system overvoltage) and its causes are found out. According to the reality condition of Shizhuyuan mine that how to prevent the overvoltage damage is systematic analysis and improvement. Than adopt effective measure and methods such as: prevention of overvoltage generation, cut off the intrusion pathway of overvoltage, choosing the surge protector reasonably with the insulation level of the system, switch to the right power supply plan and power supply facilities. These protective measures and methods comprehensively protect the safety of microseismic monitoring system equipment. After that, the microseismic monitoring system is successfully protected and no longer burned down. It successfully solves the problem of equipment burning damage of microseismic monitoring system, provides reliable guarantee for mine safety production. Shizhuyuan mine is a typical underground mining metal ore in China, the successfully solution of overvoltage damage provides a good demonstration for how to prevent mine electronic equipment underground from burning damage, It also provides more standardized and accurate requirements for the way and the protection of power supply system, and the laying of lines for a new projects.\",\"PeriodicalId\":398842,\"journal\":{\"name\":\"International Journal of Mechanical Engineering and Applications\",\"volume\":\"101 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Mechanical Engineering and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11648/J.IJMEA.20180604.12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mechanical Engineering and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/J.IJMEA.20180604.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着数字化矿山系统建设的深入发展,各种通信、信息化、自动化、智能化的电子设备在矿山中得到了广泛的应用。由于国内(中国)矿山井下环境恶劣,电子设备的各种故障频繁发生,如受潮、粉尘污染、烧伤损坏、机械损坏等。这使得系统不能稳定可靠地运行。尤其是电子设备的烧损现象。发生时往往是大面积破坏,严重影响企业的安全生产。石竹园矿安装的微震监测系统IMS设备多次发生烧损。通过对IMS燃烧模块和整个微震监测系统地下硐室故障的深入分析和诊断,找出了故障(即系统过电压)及其原因。根据石竹园矿的实际情况,对如何防止过电压损坏进行了系统的分析和改进。然后采取有效的措施和方法,如:防止过电压的产生,切断过电压的侵入途径,根据系统的绝缘水平合理选择浪涌保护器,切换合适的供电方案和供电设施。这些防护措施和方法全面保障了微震监测系统设备的安全。之后,微震监测系统得到成功保护,不再被烧毁。成功解决了微震监测系统设备烧损问题,为矿山安全生产提供了可靠保障。石竹园矿是中国典型的地下开采金属矿,其过电压损坏的成功解决,为如何防止地下矿山电子设备发生烧损提供了很好的示范,也为新项目供电系统的保护方式和线路铺设提供了更加规范和准确的要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Solution of the Overvoltage Damage for IMS’s Microseismic Monitoring System
With the further development of digitized mine system construction, various kinds of communication,information,automatic and intelligent electronic equipment are widely used in mines. Due to the harsh underground environment of domestic (China) mines, various faults of electronic equipment occur frequently, such as dampness, dust pollution, burn damage, mechanical damage. This makes the system can not run stably and reliably. Especially the phenomenon of burning damage of electronic equipment. It is often large area damage when it happens, which seriously affects the safety production of enterprises. The IMS equipment of microseismic monitoring system that installed in Shizhuyuan Mine was burning damaged many times. Through the in-depth analysis and diagnosis of the failure of the IMS burning module and the overall microseismic monitoring system underground chamber, the fault (which is the system overvoltage) and its causes are found out. According to the reality condition of Shizhuyuan mine that how to prevent the overvoltage damage is systematic analysis and improvement. Than adopt effective measure and methods such as: prevention of overvoltage generation, cut off the intrusion pathway of overvoltage, choosing the surge protector reasonably with the insulation level of the system, switch to the right power supply plan and power supply facilities. These protective measures and methods comprehensively protect the safety of microseismic monitoring system equipment. After that, the microseismic monitoring system is successfully protected and no longer burned down. It successfully solves the problem of equipment burning damage of microseismic monitoring system, provides reliable guarantee for mine safety production. Shizhuyuan mine is a typical underground mining metal ore in China, the successfully solution of overvoltage damage provides a good demonstration for how to prevent mine electronic equipment underground from burning damage, It also provides more standardized and accurate requirements for the way and the protection of power supply system, and the laying of lines for a new projects.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信