{"title":"不同换热方式下水面热排放的数值模拟","authors":"Zhang Beibei, J. Ping, L. Zhiping, Z. Jing","doi":"10.1109/ICICTA.2015.152","DOIUrl":null,"url":null,"abstract":"The calculation of heat exchange on water surface plays an important role in thermal discharge simulation. A laboratory thermal discharge flume experiment under specified artificial meteorological conditions was conducted to investigate the thermal impact process in receiving water, which was also modeled using both the Hydrodynamic Module and ECO Lab Module of MIKE3 Flow Model FM 2009 (MIKE3FM), respectively. The results indicate that the amount of heat exchange on water surface calculated by real time heat flux method and comprehensive heat transfer coefficient method is quite different. The heat flux method can reflect the heat accumulation process of environment water under the real-time meteorological conditions, while the comprehensive heat transfer coefficient doesn't embody the real physical process of heat exchange, and it is generally applied to the power plant siting and planning stage under design conditions.","PeriodicalId":231694,"journal":{"name":"2015 8th International Conference on Intelligent Computation Technology and Automation (ICICTA)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2015-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical Simulation of Thermal Discharge with Different Heat Exchange Methods on Water Surface\",\"authors\":\"Zhang Beibei, J. Ping, L. Zhiping, Z. Jing\",\"doi\":\"10.1109/ICICTA.2015.152\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The calculation of heat exchange on water surface plays an important role in thermal discharge simulation. A laboratory thermal discharge flume experiment under specified artificial meteorological conditions was conducted to investigate the thermal impact process in receiving water, which was also modeled using both the Hydrodynamic Module and ECO Lab Module of MIKE3 Flow Model FM 2009 (MIKE3FM), respectively. The results indicate that the amount of heat exchange on water surface calculated by real time heat flux method and comprehensive heat transfer coefficient method is quite different. The heat flux method can reflect the heat accumulation process of environment water under the real-time meteorological conditions, while the comprehensive heat transfer coefficient doesn't embody the real physical process of heat exchange, and it is generally applied to the power plant siting and planning stage under design conditions.\",\"PeriodicalId\":231694,\"journal\":{\"name\":\"2015 8th International Conference on Intelligent Computation Technology and Automation (ICICTA)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 8th International Conference on Intelligent Computation Technology and Automation (ICICTA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICICTA.2015.152\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 8th International Conference on Intelligent Computation Technology and Automation (ICICTA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICICTA.2015.152","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
水面换热计算在热排放模拟中起着重要的作用。利用MIKE3 Flow Model fm2009 (MIKE3FM)的hydrodynamics模块和ECO Lab模块分别对接收水的热冲击过程进行了模拟,研究了指定人工气象条件下的室内热排放水槽实验。结果表明,实时热流密度法与综合换热系数法计算的水面换热量存在较大差异。热流密度法能反映实时气象条件下环境水的蓄热过程,而综合换热系数不能体现真实的物理换热过程,一般应用于设计条件下的电厂选址规划阶段。
Numerical Simulation of Thermal Discharge with Different Heat Exchange Methods on Water Surface
The calculation of heat exchange on water surface plays an important role in thermal discharge simulation. A laboratory thermal discharge flume experiment under specified artificial meteorological conditions was conducted to investigate the thermal impact process in receiving water, which was also modeled using both the Hydrodynamic Module and ECO Lab Module of MIKE3 Flow Model FM 2009 (MIKE3FM), respectively. The results indicate that the amount of heat exchange on water surface calculated by real time heat flux method and comprehensive heat transfer coefficient method is quite different. The heat flux method can reflect the heat accumulation process of environment water under the real-time meteorological conditions, while the comprehensive heat transfer coefficient doesn't embody the real physical process of heat exchange, and it is generally applied to the power plant siting and planning stage under design conditions.