单个序列的因果编码与Lempel-Ziv微分熵

T. Linder, R. Zamir
{"title":"单个序列的因果编码与Lempel-Ziv微分熵","authors":"T. Linder, R. Zamir","doi":"10.1109/ISIT.2004.1365597","DOIUrl":null,"url":null,"abstract":"In causal source coding, the reconstruction is restricted to be a function of the present and past source samples, while the variable-length code stream may be noncausal. Neuhoff and Gilbert [1982] showed that for memoryless sources, optimum performance among all causal lossy source codes is achieved by time-sharing at most two memoryless codes (scalar quantizers) followed by entropy coding. We extend this result to causal coding of individual sequences in the limit of small distortion. The optimum performance of finite-memory variable-rate causal codes in this setting is characterized by a deterministic analogue of differential entropy, which we call \"Lempel-Ziv differential entropy.\" As a by-product, we also provide an individual-sequence version of the Shannon lower bound to the rate-distortion function.","PeriodicalId":269907,"journal":{"name":"International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings.","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2004-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Causal coding of individual sequences and the Lempel-Ziv differential entropy\",\"authors\":\"T. Linder, R. Zamir\",\"doi\":\"10.1109/ISIT.2004.1365597\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In causal source coding, the reconstruction is restricted to be a function of the present and past source samples, while the variable-length code stream may be noncausal. Neuhoff and Gilbert [1982] showed that for memoryless sources, optimum performance among all causal lossy source codes is achieved by time-sharing at most two memoryless codes (scalar quantizers) followed by entropy coding. We extend this result to causal coding of individual sequences in the limit of small distortion. The optimum performance of finite-memory variable-rate causal codes in this setting is characterized by a deterministic analogue of differential entropy, which we call \\\"Lempel-Ziv differential entropy.\\\" As a by-product, we also provide an individual-sequence version of the Shannon lower bound to the rate-distortion function.\",\"PeriodicalId\":269907,\"journal\":{\"name\":\"International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings.\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2004-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT.2004.1365597\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2004.1365597","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在因果源编码中,重构被限制为当前和过去源样本的函数,而变长码流可能是非因果的。Neuhoff和Gilbert[1982]表明,对于无记忆源,所有因果有损源代码的最佳性能是通过分时最多两个无记忆码(标量量化器),然后是熵编码来实现的。我们将这一结果推广到小失真极限下单个序列的因果编码。在这种情况下,有限记忆可变速率因果码的最佳性能表现为微分熵的确定性模拟,我们称之为“Lempel-Ziv微分熵”。作为副产品,我们还提供了速率失真函数的香农下界的单个序列版本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Causal coding of individual sequences and the Lempel-Ziv differential entropy
In causal source coding, the reconstruction is restricted to be a function of the present and past source samples, while the variable-length code stream may be noncausal. Neuhoff and Gilbert [1982] showed that for memoryless sources, optimum performance among all causal lossy source codes is achieved by time-sharing at most two memoryless codes (scalar quantizers) followed by entropy coding. We extend this result to causal coding of individual sequences in the limit of small distortion. The optimum performance of finite-memory variable-rate causal codes in this setting is characterized by a deterministic analogue of differential entropy, which we call "Lempel-Ziv differential entropy." As a by-product, we also provide an individual-sequence version of the Shannon lower bound to the rate-distortion function.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信