随机Θ(log n)-CNFs很难切割平面

Noah Fleming, D. Pankratov, T. Pitassi, Robert Robere
{"title":"随机Θ(log n)-CNFs很难切割平面","authors":"Noah Fleming, D. Pankratov, T. Pitassi, Robert Robere","doi":"10.1109/FOCS.2017.19","DOIUrl":null,"url":null,"abstract":"The random k-SAT model is the most important and well-studied distribution over k-SAT instances. It is closely connected to statistical physics and is a benchmark for satisfiability algorithms. We show that when k = Θ(log n), any Cutting Planes refutation for random k-SAT requires exponential size in the interesting regime where the number of clauses guarantees that the formula is unsatisfiable with high probability.","PeriodicalId":311592,"journal":{"name":"2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Random Θ(log n)-CNFs Are Hard for Cutting Planes\",\"authors\":\"Noah Fleming, D. Pankratov, T. Pitassi, Robert Robere\",\"doi\":\"10.1109/FOCS.2017.19\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The random k-SAT model is the most important and well-studied distribution over k-SAT instances. It is closely connected to statistical physics and is a benchmark for satisfiability algorithms. We show that when k = Θ(log n), any Cutting Planes refutation for random k-SAT requires exponential size in the interesting regime where the number of clauses guarantees that the formula is unsatisfiable with high probability.\",\"PeriodicalId\":311592,\"journal\":{\"name\":\"2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FOCS.2017.19\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 58th Annual Symposium on Foundations of Computer Science (FOCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FOCS.2017.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

随机k-SAT模型是k-SAT实例上最重要和研究最充分的分布。它与统计物理密切相关,是可满足性算法的基准。我们表明,当k = Θ(log n)时,任何随机k- sat的切割平面反驳都需要在有趣区域内的指数大小,其中子句的数量保证公式在高概率下是不可满足的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Random Θ(log n)-CNFs Are Hard for Cutting Planes
The random k-SAT model is the most important and well-studied distribution over k-SAT instances. It is closely connected to statistical physics and is a benchmark for satisfiability algorithms. We show that when k = Θ(log n), any Cutting Planes refutation for random k-SAT requires exponential size in the interesting regime where the number of clauses guarantees that the formula is unsatisfiable with high probability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信