基于蜻蜓算法的选择性抑制烧结工艺实验研究及多目标优化

S. M, Rajamani D., Balsubramanian E.
{"title":"基于蜻蜓算法的选择性抑制烧结工艺实验研究及多目标优化","authors":"S. M, Rajamani D., Balsubramanian E.","doi":"10.4018/978-1-7998-8516-0.ch005","DOIUrl":null,"url":null,"abstract":"The chapter focuses on utilizing a hybrid approach of response surface methodology and dragonfly algorithm for investigations and optimization of the selective inhibition sintering (SIS) process to improve the mechanical strengths such as tensile and flexural of fabricated high density polyethylene parts. The layer thickness (LT), heater energy (HE), heater and printer feedrate (HFR & PFR) are considered as the independent variables for the investigation. The SIS experiments are planned and conducted through a response surface methodology-based box-Behnken design approach to fabricate the test specimens. The optimal SIS parameters are obtained through a swarm intelligence metaheuristic technique namely dragonfly algorithm (DFA). The optimal parameter settings of LT of 0.102 mm, HE of 28.46 J/mm2, HFR of 3.22 mm/sec, and PFR of 110.49 mm/min are achieved through DFA for improved tensile and flexural strengths of 26.21 MPa and 65.71 MPa, respectively. Further, the prediction ability of DFA was compared with particle swarm optimization algorithm.","PeriodicalId":215367,"journal":{"name":"Applications of Artificial Intelligence in Additive Manufacturing","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental Investigations and Multi-Objective Optimization of Selective Inhibition Sintering Process Using the Dragonfly Algorithm\",\"authors\":\"S. M, Rajamani D., Balsubramanian E.\",\"doi\":\"10.4018/978-1-7998-8516-0.ch005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The chapter focuses on utilizing a hybrid approach of response surface methodology and dragonfly algorithm for investigations and optimization of the selective inhibition sintering (SIS) process to improve the mechanical strengths such as tensile and flexural of fabricated high density polyethylene parts. The layer thickness (LT), heater energy (HE), heater and printer feedrate (HFR & PFR) are considered as the independent variables for the investigation. The SIS experiments are planned and conducted through a response surface methodology-based box-Behnken design approach to fabricate the test specimens. The optimal SIS parameters are obtained through a swarm intelligence metaheuristic technique namely dragonfly algorithm (DFA). The optimal parameter settings of LT of 0.102 mm, HE of 28.46 J/mm2, HFR of 3.22 mm/sec, and PFR of 110.49 mm/min are achieved through DFA for improved tensile and flexural strengths of 26.21 MPa and 65.71 MPa, respectively. Further, the prediction ability of DFA was compared with particle swarm optimization algorithm.\",\"PeriodicalId\":215367,\"journal\":{\"name\":\"Applications of Artificial Intelligence in Additive Manufacturing\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applications of Artificial Intelligence in Additive Manufacturing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/978-1-7998-8516-0.ch005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applications of Artificial Intelligence in Additive Manufacturing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/978-1-7998-8516-0.ch005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本章的重点是利用响应面法和蜻蜓算法的混合方法对选择性抑制烧结(SIS)工艺进行研究和优化,以提高高密度聚乙烯零件的拉伸和弯曲等机械强度。层厚(LT),加热器能量(HE),加热器和打印机进料速度(HFR & PFR)被认为是研究的独立变量。SIS实验是通过基于响应面方法的box-Behnken设计方法来制作试件的。通过群智能元启发式算法蜻蜓算法(DFA)获得最优SIS参数。经DFA优化后的拉伸强度为0.102 mm, HE为28.46 J/mm2, HFR为3.22 mm/sec, PFR为110.49 mm/min,抗拉强度为26.21 MPa,抗弯强度为65.71 MPa。进一步,比较了DFA算法与粒子群算法的预测能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimental Investigations and Multi-Objective Optimization of Selective Inhibition Sintering Process Using the Dragonfly Algorithm
The chapter focuses on utilizing a hybrid approach of response surface methodology and dragonfly algorithm for investigations and optimization of the selective inhibition sintering (SIS) process to improve the mechanical strengths such as tensile and flexural of fabricated high density polyethylene parts. The layer thickness (LT), heater energy (HE), heater and printer feedrate (HFR & PFR) are considered as the independent variables for the investigation. The SIS experiments are planned and conducted through a response surface methodology-based box-Behnken design approach to fabricate the test specimens. The optimal SIS parameters are obtained through a swarm intelligence metaheuristic technique namely dragonfly algorithm (DFA). The optimal parameter settings of LT of 0.102 mm, HE of 28.46 J/mm2, HFR of 3.22 mm/sec, and PFR of 110.49 mm/min are achieved through DFA for improved tensile and flexural strengths of 26.21 MPa and 65.71 MPa, respectively. Further, the prediction ability of DFA was compared with particle swarm optimization algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信