睡眠不足:利用多模态信号的内部和内部关系来识别睡眠唤醒

Tanuka Bhattacharjee, Deepan Das, S. Alam, A. M V, Prasanta Kumar Ghosh, Ayush Ranjan Lohani, Rohan Banerjee, A. Choudhury, A. Pal
{"title":"睡眠不足:利用多模态信号的内部和内部关系来识别睡眠唤醒","authors":"Tanuka Bhattacharjee, Deepan Das, S. Alam, A. M V, Prasanta Kumar Ghosh, Ayush Ranjan Lohani, Rohan Banerjee, A. Choudhury, A. Pal","doi":"10.22489/CinC.2018.245","DOIUrl":null,"url":null,"abstract":"Sleep arousal directly affects the quality of sleep. PhysioNet Challenge 2018 aims to correctly identify designated target arousal (non-apnea arousal) and non-arousal regions from simultaneously recorded multiple biomedical signals. Our contribution lies in a feature extraction algorithm that extracts generic and domain-specific features from different biomedical signals available in the challenge provided dataset to form a composite feature vector. 50 most significant features are selected based on Minimum Redundancy Maximum Relevance scores for final classification using multiple unbiased Random Forests. The approach is designed to produce a single label for a 20-second segment containing all channels, followed by smoothing the label time-series per subject. Our algorithm yields the median Area Under Precision-Recall Curve (AUPRC) as 0.29 on 5-fold cross-validation on the training dataset. The same value of AUPRC is maintained for the test dataset as well, thereby emphasizing the stability of the proposed algorithm. This method secured the global rank of 8 during the official phase of the challenge.","PeriodicalId":215521,"journal":{"name":"2018 Computing in Cardiology Conference (CinC)","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"SleepTight: Identifying Sleep Arousals Using Inter and Intra-Relation of Multimodal Signals\",\"authors\":\"Tanuka Bhattacharjee, Deepan Das, S. Alam, A. M V, Prasanta Kumar Ghosh, Ayush Ranjan Lohani, Rohan Banerjee, A. Choudhury, A. Pal\",\"doi\":\"10.22489/CinC.2018.245\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sleep arousal directly affects the quality of sleep. PhysioNet Challenge 2018 aims to correctly identify designated target arousal (non-apnea arousal) and non-arousal regions from simultaneously recorded multiple biomedical signals. Our contribution lies in a feature extraction algorithm that extracts generic and domain-specific features from different biomedical signals available in the challenge provided dataset to form a composite feature vector. 50 most significant features are selected based on Minimum Redundancy Maximum Relevance scores for final classification using multiple unbiased Random Forests. The approach is designed to produce a single label for a 20-second segment containing all channels, followed by smoothing the label time-series per subject. Our algorithm yields the median Area Under Precision-Recall Curve (AUPRC) as 0.29 on 5-fold cross-validation on the training dataset. The same value of AUPRC is maintained for the test dataset as well, thereby emphasizing the stability of the proposed algorithm. This method secured the global rank of 8 during the official phase of the challenge.\",\"PeriodicalId\":215521,\"journal\":{\"name\":\"2018 Computing in Cardiology Conference (CinC)\",\"volume\":\"39 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Computing in Cardiology Conference (CinC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22489/CinC.2018.245\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Computing in Cardiology Conference (CinC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22489/CinC.2018.245","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

睡眠唤醒直接影响睡眠质量。PhysioNet Challenge 2018旨在从同时记录的多个生物医学信号中正确识别指定的目标唤醒(非呼吸暂停唤醒)和非唤醒区域。我们的贡献在于特征提取算法,该算法从挑战提供的数据集中可用的不同生物医学信号中提取通用和特定领域的特征,以形成复合特征向量。基于最小冗余最大关联分数选择50个最重要的特征,使用多个无偏随机森林进行最终分类。该方法旨在为包含所有频道的20秒片段生成单个标签,然后平滑每个主题的标签时间序列。我们的算法在训练数据集上进行5次交叉验证,得出准确率-召回率曲线下的中位数面积(AUPRC)为0.29。测试数据集也保持了相同的AUPRC值,从而强调了本文算法的稳定性。这种方法在挑战的正式阶段确保了全球排名8。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SleepTight: Identifying Sleep Arousals Using Inter and Intra-Relation of Multimodal Signals
Sleep arousal directly affects the quality of sleep. PhysioNet Challenge 2018 aims to correctly identify designated target arousal (non-apnea arousal) and non-arousal regions from simultaneously recorded multiple biomedical signals. Our contribution lies in a feature extraction algorithm that extracts generic and domain-specific features from different biomedical signals available in the challenge provided dataset to form a composite feature vector. 50 most significant features are selected based on Minimum Redundancy Maximum Relevance scores for final classification using multiple unbiased Random Forests. The approach is designed to produce a single label for a 20-second segment containing all channels, followed by smoothing the label time-series per subject. Our algorithm yields the median Area Under Precision-Recall Curve (AUPRC) as 0.29 on 5-fold cross-validation on the training dataset. The same value of AUPRC is maintained for the test dataset as well, thereby emphasizing the stability of the proposed algorithm. This method secured the global rank of 8 during the official phase of the challenge.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信