{"title":"微秒快速,100千伏模块化脉冲充电器","authors":"T. Klein, A. Neuber, J. Dickens","doi":"10.1109/PPPS34859.2019.9009641","DOIUrl":null,"url":null,"abstract":"A pulse charger module was designed and tested for use in a larger system Each pulse charger module is powered with a 12 V Lithium-ion battery and set to charge a nF sized capacitor up to 100 kV in less than 10 µs. This is achieved by initially charging a µF sized capacitor to 3 kV, then switching a thyristor to discharge this capacitor into a step-up pulse transformer to charge the load capacitor. A PIC 18F26K80 8-bit microcontroller in each pulse charger module will be used to control the module, communicate with other modules and a computer, and monitor voltages. The modules are programmed to automatically detect the total number of modules well as communication delays between each module at startup, allowing for synchronous triggering and induvial identification and control. Each module is kept in a low power mode when not in use, and fiber optic communication is used throughout such that electrical isolation between modules and the master computer is ensured.","PeriodicalId":103240,"journal":{"name":"2019 IEEE Pulsed Power & Plasma Science (PPPS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microsecond Fast, 100 kV Modular Pulse Charger\",\"authors\":\"T. Klein, A. Neuber, J. Dickens\",\"doi\":\"10.1109/PPPS34859.2019.9009641\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A pulse charger module was designed and tested for use in a larger system Each pulse charger module is powered with a 12 V Lithium-ion battery and set to charge a nF sized capacitor up to 100 kV in less than 10 µs. This is achieved by initially charging a µF sized capacitor to 3 kV, then switching a thyristor to discharge this capacitor into a step-up pulse transformer to charge the load capacitor. A PIC 18F26K80 8-bit microcontroller in each pulse charger module will be used to control the module, communicate with other modules and a computer, and monitor voltages. The modules are programmed to automatically detect the total number of modules well as communication delays between each module at startup, allowing for synchronous triggering and induvial identification and control. Each module is kept in a low power mode when not in use, and fiber optic communication is used throughout such that electrical isolation between modules and the master computer is ensured.\",\"PeriodicalId\":103240,\"journal\":{\"name\":\"2019 IEEE Pulsed Power & Plasma Science (PPPS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE Pulsed Power & Plasma Science (PPPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PPPS34859.2019.9009641\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Pulsed Power & Plasma Science (PPPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PPPS34859.2019.9009641","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A pulse charger module was designed and tested for use in a larger system Each pulse charger module is powered with a 12 V Lithium-ion battery and set to charge a nF sized capacitor up to 100 kV in less than 10 µs. This is achieved by initially charging a µF sized capacitor to 3 kV, then switching a thyristor to discharge this capacitor into a step-up pulse transformer to charge the load capacitor. A PIC 18F26K80 8-bit microcontroller in each pulse charger module will be used to control the module, communicate with other modules and a computer, and monitor voltages. The modules are programmed to automatically detect the total number of modules well as communication delays between each module at startup, allowing for synchronous triggering and induvial identification and control. Each module is kept in a low power mode when not in use, and fiber optic communication is used throughout such that electrical isolation between modules and the master computer is ensured.