不完全信息环境下多属性决策中的策略权重操纵

Yating Liu, Yucheng Dong, F. Chiclana, F. J. Cabrerizo, E. Herrera-Viedma
{"title":"不完全信息环境下多属性决策中的策略权重操纵","authors":"Yating Liu, Yucheng Dong, F. Chiclana, F. J. Cabrerizo, E. Herrera-Viedma","doi":"10.1109/FUZZ-IEEE.2017.8015419","DOIUrl":null,"url":null,"abstract":"In some real-world multiple attribute decision making (MADM) problems, a decision maker can strategically set attribute weights to obtain her/his desired ranking of alternatives, which is called the strategic weight manipulation of the MADM. Sometimes, the attribute weights are given with imprecise or partial information, which is called incomplete information of attribute weights. In this study, we propose the strategic weight manipulation under incomplete information on attributes weights. Then, a series of mixed 0–1 linear programming models (MLPMs) are proposed to derive a strategic weight vector for a desired ranking of an alternative. Finally, a numerical example is used to demonstrate the validity of our models.","PeriodicalId":408343,"journal":{"name":"2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Strategic weight manipulation in multiple attribute decision making in an incomplete information context\",\"authors\":\"Yating Liu, Yucheng Dong, F. Chiclana, F. J. Cabrerizo, E. Herrera-Viedma\",\"doi\":\"10.1109/FUZZ-IEEE.2017.8015419\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In some real-world multiple attribute decision making (MADM) problems, a decision maker can strategically set attribute weights to obtain her/his desired ranking of alternatives, which is called the strategic weight manipulation of the MADM. Sometimes, the attribute weights are given with imprecise or partial information, which is called incomplete information of attribute weights. In this study, we propose the strategic weight manipulation under incomplete information on attributes weights. Then, a series of mixed 0–1 linear programming models (MLPMs) are proposed to derive a strategic weight vector for a desired ranking of an alternative. Finally, a numerical example is used to demonstrate the validity of our models.\",\"PeriodicalId\":408343,\"journal\":{\"name\":\"2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FUZZ-IEEE.2017.8015419\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZ-IEEE.2017.8015419","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

在一些现实世界的多属性决策问题中,决策者可以策略性地设置属性权重,以获得他/她想要的备选方案排名,这被称为多属性决策的策略权重操纵。有时,属性权值的给出带有不精确或部分信息,称为属性权值的不完全信息。在本研究中,我们提出了属性权重信息不完全情况下的策略权重操作。然后,提出了一系列混合0-1线性规划模型(mlpm),以获得备选方案期望排名的策略权重向量。最后,通过数值算例验证了模型的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Strategic weight manipulation in multiple attribute decision making in an incomplete information context
In some real-world multiple attribute decision making (MADM) problems, a decision maker can strategically set attribute weights to obtain her/his desired ranking of alternatives, which is called the strategic weight manipulation of the MADM. Sometimes, the attribute weights are given with imprecise or partial information, which is called incomplete information of attribute weights. In this study, we propose the strategic weight manipulation under incomplete information on attributes weights. Then, a series of mixed 0–1 linear programming models (MLPMs) are proposed to derive a strategic weight vector for a desired ranking of an alternative. Finally, a numerical example is used to demonstrate the validity of our models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信