{"title":"基于注意反馈的地形混合网络模糊知识获取","authors":"Isao Ha Yashi, J. Williamson","doi":"10.1109/IJCNN.2001.939564","DOIUrl":null,"url":null,"abstract":"The topographic attentive mapping network based on a biologically-motivated neural network model is an especially effective model. When the network makes an incorrect output prediction, the attentional feedback circuit modulates the learning rates and adds a node to the category layer in order to improve the network's prediction accuracy. In this paper, a pruning method for reducing the number of category and feature nodes is formulated. We discuss the formulation and show its usefulness through some examples.","PeriodicalId":346955,"journal":{"name":"IJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Acquisition of fuzzy knowledge from topographic mixture networks with attentional feedback\",\"authors\":\"Isao Ha Yashi, J. Williamson\",\"doi\":\"10.1109/IJCNN.2001.939564\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The topographic attentive mapping network based on a biologically-motivated neural network model is an especially effective model. When the network makes an incorrect output prediction, the attentional feedback circuit modulates the learning rates and adds a node to the category layer in order to improve the network's prediction accuracy. In this paper, a pruning method for reducing the number of category and feature nodes is formulated. We discuss the formulation and show its usefulness through some examples.\",\"PeriodicalId\":346955,\"journal\":{\"name\":\"IJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2001.939564\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2001.939564","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Acquisition of fuzzy knowledge from topographic mixture networks with attentional feedback
The topographic attentive mapping network based on a biologically-motivated neural network model is an especially effective model. When the network makes an incorrect output prediction, the attentional feedback circuit modulates the learning rates and adds a node to the category layer in order to improve the network's prediction accuracy. In this paper, a pruning method for reducing the number of category and feature nodes is formulated. We discuss the formulation and show its usefulness through some examples.