{"title":"k-Ary n-Cube网络上密集线性系统的并行解","authors":"A. Al-Ayyoub, K. Day","doi":"10.1142/S0129053397000088","DOIUrl":null,"url":null,"abstract":"In this paper a parallel algorithm for solving systems of linear equation on the k-ary n-cube is presented and evaluated for the first time. The proposed algorithm is of O(N3/kn) computation complexity and uses O(Nn) communication time to factorize a matrix of order N on the k-ary n-cube. This is better than the best known results for the hypercube, O(N log kn), and the mesh, , each with approximately kn nodes. The proposed parallel algorithm takes advantage of the extra connectivity in the k-ary n-cube in order to reduce the communication time involved in tasks such as pivoting, row/column interchanges, and pivot row and multipliers column broadcasts.","PeriodicalId":270006,"journal":{"name":"Int. J. High Speed Comput.","volume":"137 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Parallel Solution of Dense Linear Systems on the k-Ary n-Cube Networks\",\"authors\":\"A. Al-Ayyoub, K. Day\",\"doi\":\"10.1142/S0129053397000088\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper a parallel algorithm for solving systems of linear equation on the k-ary n-cube is presented and evaluated for the first time. The proposed algorithm is of O(N3/kn) computation complexity and uses O(Nn) communication time to factorize a matrix of order N on the k-ary n-cube. This is better than the best known results for the hypercube, O(N log kn), and the mesh, , each with approximately kn nodes. The proposed parallel algorithm takes advantage of the extra connectivity in the k-ary n-cube in order to reduce the communication time involved in tasks such as pivoting, row/column interchanges, and pivot row and multipliers column broadcasts.\",\"PeriodicalId\":270006,\"journal\":{\"name\":\"Int. J. High Speed Comput.\",\"volume\":\"137 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1997-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. High Speed Comput.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/S0129053397000088\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. High Speed Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S0129053397000088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Parallel Solution of Dense Linear Systems on the k-Ary n-Cube Networks
In this paper a parallel algorithm for solving systems of linear equation on the k-ary n-cube is presented and evaluated for the first time. The proposed algorithm is of O(N3/kn) computation complexity and uses O(Nn) communication time to factorize a matrix of order N on the k-ary n-cube. This is better than the best known results for the hypercube, O(N log kn), and the mesh, , each with approximately kn nodes. The proposed parallel algorithm takes advantage of the extra connectivity in the k-ary n-cube in order to reduce the communication time involved in tasks such as pivoting, row/column interchanges, and pivot row and multipliers column broadcasts.