PG(6,q)的外部飞溅:横截面

S. G. Barwick, Wen-Ai Jackson
{"title":"PG(6,q)的外部飞溅:横截面","authors":"S. G. Barwick, Wen-Ai Jackson","doi":"10.2140/IIG.2019.17.1","DOIUrl":null,"url":null,"abstract":"Let $\\pi$ be an order-$q$-subplane of $PG(2,q^3)$ that is exterior to $\\ell_\\infty$. Then the exterior splash of $\\pi$ is the set of $q^2+q+1$ points on $\\ell_\\infty$ that lie on an extended line of $\\pi$. Exterior splashes are projectively equivalent to scattered linear sets of rank 3, covers of the circle geometry $CG(3,q)$, and hyper-reguli in $PG(5,q)$. In this article we use the Bruck-Bose representation in $PG(6,q)$ to investigate the structure of $\\pi$, and the interaction between $\\pi$ and its exterior splash. In $PG(6,q)$, an exterior splash $\\mathbb S$ has two sets of cover planes (which are hyper-reguli) and we show that each set has three unique transversals lines in the cubic extension $PG(6,q^3)$. These transversal lines are used to characterise the carriers of $\\mathbb S$, and to characterise the sublines of $\\mathbb S$.","PeriodicalId":127937,"journal":{"name":"Innovations in Incidence Geometry: Algebraic, Topological and Combinatorial","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The exterior splash in PG(6,q) :\\ntransversals\",\"authors\":\"S. G. Barwick, Wen-Ai Jackson\",\"doi\":\"10.2140/IIG.2019.17.1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $\\\\pi$ be an order-$q$-subplane of $PG(2,q^3)$ that is exterior to $\\\\ell_\\\\infty$. Then the exterior splash of $\\\\pi$ is the set of $q^2+q+1$ points on $\\\\ell_\\\\infty$ that lie on an extended line of $\\\\pi$. Exterior splashes are projectively equivalent to scattered linear sets of rank 3, covers of the circle geometry $CG(3,q)$, and hyper-reguli in $PG(5,q)$. In this article we use the Bruck-Bose representation in $PG(6,q)$ to investigate the structure of $\\\\pi$, and the interaction between $\\\\pi$ and its exterior splash. In $PG(6,q)$, an exterior splash $\\\\mathbb S$ has two sets of cover planes (which are hyper-reguli) and we show that each set has three unique transversals lines in the cubic extension $PG(6,q^3)$. These transversal lines are used to characterise the carriers of $\\\\mathbb S$, and to characterise the sublines of $\\\\mathbb S$.\",\"PeriodicalId\":127937,\"journal\":{\"name\":\"Innovations in Incidence Geometry: Algebraic, Topological and Combinatorial\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Innovations in Incidence Geometry: Algebraic, Topological and Combinatorial\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2140/IIG.2019.17.1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Innovations in Incidence Geometry: Algebraic, Topological and Combinatorial","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/IIG.2019.17.1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

设$\pi$为$PG(2,q^3)$的一个order- $q$子平面,它位于$\ell_\infty$之外。然后,$\pi$的外部飞溅是$\ell_\infty$上位于$\pi$延长线上的$q^2+q+1$点的集合。外部飞溅投影等效于秩3的分散线性集、圆形几何$CG(3,q)$的覆盖和$PG(5,q)$中的超正则。在本文中,我们使用$PG(6,q)$中的Bruck-Bose表示来研究$\pi$的结构,以及$\pi$与其外部飞溅之间的相互作用。在$PG(6,q)$中,外部飞溅$\mathbb S$有两组覆盖平面(它们是超规则的),并且我们表明每一组在三次扩展$PG(6,q^3)$中有三条唯一的截线。这些截线用来表示$\mathbb S$的载体和$\mathbb S$的子线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The exterior splash in PG(6,q) : transversals
Let $\pi$ be an order-$q$-subplane of $PG(2,q^3)$ that is exterior to $\ell_\infty$. Then the exterior splash of $\pi$ is the set of $q^2+q+1$ points on $\ell_\infty$ that lie on an extended line of $\pi$. Exterior splashes are projectively equivalent to scattered linear sets of rank 3, covers of the circle geometry $CG(3,q)$, and hyper-reguli in $PG(5,q)$. In this article we use the Bruck-Bose representation in $PG(6,q)$ to investigate the structure of $\pi$, and the interaction between $\pi$ and its exterior splash. In $PG(6,q)$, an exterior splash $\mathbb S$ has two sets of cover planes (which are hyper-reguli) and we show that each set has three unique transversals lines in the cubic extension $PG(6,q^3)$. These transversal lines are used to characterise the carriers of $\mathbb S$, and to characterise the sublines of $\mathbb S$.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信