之字形持久性的快速计算

T. Dey, T. Hou
{"title":"之字形持久性的快速计算","authors":"T. Dey, T. Hou","doi":"10.48550/arXiv.2204.11080","DOIUrl":null,"url":null,"abstract":"Zigzag persistence is a powerful extension of the standard persistence which allows deletions of simplices besides insertions. However, computing zigzag persistence usually takes considerably more time than the standard persistence. We propose an algorithm called FastZigzag which narrows this efficiency gap. Our main result is that an input simplex-wise zigzag filtration can be converted to a cell-wise non-zigzag filtration of a $\\Delta$-complex with the same length, where the cells are copies of the input simplices. This conversion step in FastZigzag incurs very little cost. Furthermore, the barcode of the original filtration can be easily read from the barcode of the new cell-wise filtration because the conversion embodies a series of diamond switches known in topological data analysis. This seemingly simple observation opens up the vast possibilities for improving the computation of zigzag persistence because any efficient algorithm/software for standard persistence can now be applied to computing zigzag persistence. Our experiment shows that this indeed achieves substantial performance gain over the existing state-of-the-art softwares.","PeriodicalId":201778,"journal":{"name":"Embedded Systems and Applications","volume":"71 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Fast Computation of Zigzag Persistence\",\"authors\":\"T. Dey, T. Hou\",\"doi\":\"10.48550/arXiv.2204.11080\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Zigzag persistence is a powerful extension of the standard persistence which allows deletions of simplices besides insertions. However, computing zigzag persistence usually takes considerably more time than the standard persistence. We propose an algorithm called FastZigzag which narrows this efficiency gap. Our main result is that an input simplex-wise zigzag filtration can be converted to a cell-wise non-zigzag filtration of a $\\\\Delta$-complex with the same length, where the cells are copies of the input simplices. This conversion step in FastZigzag incurs very little cost. Furthermore, the barcode of the original filtration can be easily read from the barcode of the new cell-wise filtration because the conversion embodies a series of diamond switches known in topological data analysis. This seemingly simple observation opens up the vast possibilities for improving the computation of zigzag persistence because any efficient algorithm/software for standard persistence can now be applied to computing zigzag persistence. Our experiment shows that this indeed achieves substantial performance gain over the existing state-of-the-art softwares.\",\"PeriodicalId\":201778,\"journal\":{\"name\":\"Embedded Systems and Applications\",\"volume\":\"71 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Embedded Systems and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2204.11080\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Embedded Systems and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2204.11080","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

锯齿形持久化是标准持久化的强大扩展,除了插入之外,它还允许删除简单项。然而,计算之字形持久性通常比标准持久性花费更多的时间。我们提出了一种称为FastZigzag的算法来缩小这种效率差距。我们的主要结果是,输入单形的之字形过滤可以转换为具有相同长度的$\Delta$复合物的单元智能非之字形过滤,其中单元是输入单形的副本。在FastZigzag中,这个转换步骤的成本非常低。此外,由于这种转换体现了拓扑数据分析中已知的一系列钻石开关,因此可以很容易地从新的细胞过滤的条形码中读取原始过滤的条形码。这个看似简单的观察结果为改进之字形持久性的计算提供了巨大的可能性,因为任何用于标准持久性的高效算法/软件现在都可以应用于计算之字形持久性。我们的实验表明,与现有的最先进的软件相比,这确实实现了实质性的性能提升。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast Computation of Zigzag Persistence
Zigzag persistence is a powerful extension of the standard persistence which allows deletions of simplices besides insertions. However, computing zigzag persistence usually takes considerably more time than the standard persistence. We propose an algorithm called FastZigzag which narrows this efficiency gap. Our main result is that an input simplex-wise zigzag filtration can be converted to a cell-wise non-zigzag filtration of a $\Delta$-complex with the same length, where the cells are copies of the input simplices. This conversion step in FastZigzag incurs very little cost. Furthermore, the barcode of the original filtration can be easily read from the barcode of the new cell-wise filtration because the conversion embodies a series of diamond switches known in topological data analysis. This seemingly simple observation opens up the vast possibilities for improving the computation of zigzag persistence because any efficient algorithm/software for standard persistence can now be applied to computing zigzag persistence. Our experiment shows that this indeed achieves substantial performance gain over the existing state-of-the-art softwares.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信