基于联合双边滤波和堆叠稀疏自编码器的高光谱图像光谱空间分类

C. Zhao, Xiaoqing Wan, Yiming Yan
{"title":"基于联合双边滤波和堆叠稀疏自编码器的高光谱图像光谱空间分类","authors":"C. Zhao, Xiaoqing Wan, Yiming Yan","doi":"10.1109/EIIS.2017.8298563","DOIUrl":null,"url":null,"abstract":"Reducing noise in hyperspectral image (HSI) while preserving the details and extracting useful spectral-spatial information have always been one of the important problems of the classification task. This paper proposes a method by combining joint bilateral filter (JBF) and stacked sparse autoencoder via an ensemble strategy for the HSI classification. First, the novel JBF has an ability to preserve the important texture features and to restore the corrupted pixel, while extracting spectral and spatial information from hyperspectral data due to consider spectral as well as the spatial closeness for smoothing the HSI simultaneously. Second, stacked sparse autoencoderand (SSA) is adopted to adaptively extract high-level spectral-spatial feature representations from the smoothed image. Finally, the random forest (RF) classifier is adopted to perform supervised fine-tuning and classification. Experimental results on two real hyperspectral data sets demonstrate the effectiveness of the proposed classification approach.","PeriodicalId":434246,"journal":{"name":"2017 First International Conference on Electronics Instrumentation & Information Systems (EIIS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Spectral-spatial classification of hyperspectral images based on joint bilateral filter and stacked sparse autoencoder\",\"authors\":\"C. Zhao, Xiaoqing Wan, Yiming Yan\",\"doi\":\"10.1109/EIIS.2017.8298563\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Reducing noise in hyperspectral image (HSI) while preserving the details and extracting useful spectral-spatial information have always been one of the important problems of the classification task. This paper proposes a method by combining joint bilateral filter (JBF) and stacked sparse autoencoder via an ensemble strategy for the HSI classification. First, the novel JBF has an ability to preserve the important texture features and to restore the corrupted pixel, while extracting spectral and spatial information from hyperspectral data due to consider spectral as well as the spatial closeness for smoothing the HSI simultaneously. Second, stacked sparse autoencoderand (SSA) is adopted to adaptively extract high-level spectral-spatial feature representations from the smoothed image. Finally, the random forest (RF) classifier is adopted to perform supervised fine-tuning and classification. Experimental results on two real hyperspectral data sets demonstrate the effectiveness of the proposed classification approach.\",\"PeriodicalId\":434246,\"journal\":{\"name\":\"2017 First International Conference on Electronics Instrumentation & Information Systems (EIIS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 First International Conference on Electronics Instrumentation & Information Systems (EIIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EIIS.2017.8298563\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 First International Conference on Electronics Instrumentation & Information Systems (EIIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EIIS.2017.8298563","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

在保留细节的同时降低高光谱图像中的噪声,提取有用的光谱空间信息一直是高光谱图像分类的重要问题之一。本文提出了一种结合联合双边滤波器(JBF)和堆叠稀疏自编码器的集成策略进行HSI分类的方法。首先,该方法能够保留重要的纹理特征并恢复损坏的像素,同时从高光谱数据中提取光谱和空间信息,因为它同时考虑了光谱和空间接近度来平滑HSI。其次,采用堆叠稀疏自编码器(stacked sparse autoencoder, SSA)自适应提取平滑图像的高阶频谱空间特征表示;最后,采用随机森林分类器进行监督微调和分类。在两个真实高光谱数据集上的实验结果证明了该分类方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Spectral-spatial classification of hyperspectral images based on joint bilateral filter and stacked sparse autoencoder
Reducing noise in hyperspectral image (HSI) while preserving the details and extracting useful spectral-spatial information have always been one of the important problems of the classification task. This paper proposes a method by combining joint bilateral filter (JBF) and stacked sparse autoencoder via an ensemble strategy for the HSI classification. First, the novel JBF has an ability to preserve the important texture features and to restore the corrupted pixel, while extracting spectral and spatial information from hyperspectral data due to consider spectral as well as the spatial closeness for smoothing the HSI simultaneously. Second, stacked sparse autoencoderand (SSA) is adopted to adaptively extract high-level spectral-spatial feature representations from the smoothed image. Finally, the random forest (RF) classifier is adopted to perform supervised fine-tuning and classification. Experimental results on two real hyperspectral data sets demonstrate the effectiveness of the proposed classification approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信