一种新的带有剪枝函数的多分类器集成算法

Min Fang
{"title":"一种新的带有剪枝函数的多分类器集成算法","authors":"Min Fang","doi":"10.1109/FSKD.2008.398","DOIUrl":null,"url":null,"abstract":"For improving identification rate and real time of ensembles learning algorithm, the diversity of ensemble classifiers is analyzed and a novel combination algorithm with pruning function of multiple classifiers is presented. A coincident errors measure of classifiers is presented for the compound error probability by which classifiers are partitioned, and some classifiers in a partition are pruned. The voting weights of pruned classifiers are assigned according to diversity between classifiers, so that optimize classifier set and voting weights for integration are obtained. The UCI data depository and Radar Radiant Point data are used as test data, and the result of experiment show that classifiers ensemble with pruning can get similar classification accuracy as accuracy of entire classifier integration and reduce classification time.","PeriodicalId":208332,"journal":{"name":"2008 Fifth International Conference on Fuzzy Systems and Knowledge Discovery","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A Novel Multiple Classifiers Integration Algorithm with Pruning Function\",\"authors\":\"Min Fang\",\"doi\":\"10.1109/FSKD.2008.398\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For improving identification rate and real time of ensembles learning algorithm, the diversity of ensemble classifiers is analyzed and a novel combination algorithm with pruning function of multiple classifiers is presented. A coincident errors measure of classifiers is presented for the compound error probability by which classifiers are partitioned, and some classifiers in a partition are pruned. The voting weights of pruned classifiers are assigned according to diversity between classifiers, so that optimize classifier set and voting weights for integration are obtained. The UCI data depository and Radar Radiant Point data are used as test data, and the result of experiment show that classifiers ensemble with pruning can get similar classification accuracy as accuracy of entire classifier integration and reduce classification time.\",\"PeriodicalId\":208332,\"journal\":{\"name\":\"2008 Fifth International Conference on Fuzzy Systems and Knowledge Discovery\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-10-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 Fifth International Conference on Fuzzy Systems and Knowledge Discovery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FSKD.2008.398\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Fifth International Conference on Fuzzy Systems and Knowledge Discovery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FSKD.2008.398","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

为了提高集成学习算法的识别率和实时性,分析了集成分类器的多样性,提出了一种具有多分类器剪枝功能的组合算法。针对分类器划分的复合错误概率,提出了分类器的重合误差度量,并对划分中的分类器进行剪枝。根据分类器之间的多样性,分配被修剪分类器的投票权,从而获得最优分类器集和用于集成的投票权。以UCI数据库和雷达辐射点数据作为测试数据,实验结果表明,采用整枝方法的分类器集成可以获得与整枝分类器集成相似的分类精度,减少了分类时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Novel Multiple Classifiers Integration Algorithm with Pruning Function
For improving identification rate and real time of ensembles learning algorithm, the diversity of ensemble classifiers is analyzed and a novel combination algorithm with pruning function of multiple classifiers is presented. A coincident errors measure of classifiers is presented for the compound error probability by which classifiers are partitioned, and some classifiers in a partition are pruned. The voting weights of pruned classifiers are assigned according to diversity between classifiers, so that optimize classifier set and voting weights for integration are obtained. The UCI data depository and Radar Radiant Point data are used as test data, and the result of experiment show that classifiers ensemble with pruning can get similar classification accuracy as accuracy of entire classifier integration and reduce classification time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信