交叉口交通流模式的动态总最小二乘估计

Baibing Li, B. Moor
{"title":"交叉口交通流模式的动态总最小二乘估计","authors":"Baibing Li, B. Moor","doi":"10.23919/ECC.1999.7099371","DOIUrl":null,"url":null,"abstract":"Total least squares (TLS) technique is introduced to dynamically identify intersection traffic flow patterns when both of the observations for entering and exiting vehicles have random measurement errors. An algorithm of dynamic TLS estimations of intersection traffic flow patterns is proposed. Simulation experiments show that it can improve estimation accuracy substantially in comparison with recursive ordinary least squares estimations. Hence, the dynamic TLS estimations provide a competitive alternative for identifications of intersection traffic flow patterns.","PeriodicalId":117668,"journal":{"name":"1999 European Control Conference (ECC)","volume":"86 29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1999-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic total least squares estimation of intersection traffic flow patterns\",\"authors\":\"Baibing Li, B. Moor\",\"doi\":\"10.23919/ECC.1999.7099371\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Total least squares (TLS) technique is introduced to dynamically identify intersection traffic flow patterns when both of the observations for entering and exiting vehicles have random measurement errors. An algorithm of dynamic TLS estimations of intersection traffic flow patterns is proposed. Simulation experiments show that it can improve estimation accuracy substantially in comparison with recursive ordinary least squares estimations. Hence, the dynamic TLS estimations provide a competitive alternative for identifications of intersection traffic flow patterns.\",\"PeriodicalId\":117668,\"journal\":{\"name\":\"1999 European Control Conference (ECC)\",\"volume\":\"86 29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1999 European Control Conference (ECC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ECC.1999.7099371\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1999 European Control Conference (ECC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ECC.1999.7099371","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

引入总最小二乘(TLS)技术,在交叉口进出车辆观测值均存在随机误差的情况下动态识别交叉口交通流模式。提出了一种交叉口交通流模式动态TLS估计算法。仿真实验表明,与递推普通最小二乘估计相比,该方法能显著提高估计精度。因此,动态TLS估计为交叉口交通流模式的识别提供了一种有竞争力的替代方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dynamic total least squares estimation of intersection traffic flow patterns
Total least squares (TLS) technique is introduced to dynamically identify intersection traffic flow patterns when both of the observations for entering and exiting vehicles have random measurement errors. An algorithm of dynamic TLS estimations of intersection traffic flow patterns is proposed. Simulation experiments show that it can improve estimation accuracy substantially in comparison with recursive ordinary least squares estimations. Hence, the dynamic TLS estimations provide a competitive alternative for identifications of intersection traffic flow patterns.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信