用单纯形模拟方法突出石竹科皂苷的糖基化途径

Asma Hammami, M. Farman, N. Semmar
{"title":"用单纯形模拟方法突出石竹科皂苷的糖基化途径","authors":"Asma Hammami, M. Farman, N. Semmar","doi":"10.3390/mol2net-05-06386","DOIUrl":null,"url":null,"abstract":"Glycosylation mechanisms in saponins of Caryophyllaceae plant family were subjected to simulation by statistically exploring variability of 231 chemical structures belonging to four different aglycones: gypsogenin (Gyp), quillaic acid (QA), gypsogenic acid (GA), 16-OH-gypsogenic acid (16-OH-GA). Saponins based on different aglycones were initially characterized by relative glycosylation levels of different carbons. Simulation was initialized by combining the four saponin groups using Scheffe’s mixture design which provides a complete set of N gradual weightings of groups. Combined saponins were randomly and iteratively sampled from different groups by bootstrap technique. For a same combination, saponins were averaged leading to barycentric glycosylation profile. Iterations of the N barycentric profiles and averaging provided a final response matrix of N smoothed glycosylation profiles from which regulation mechanisms of carbons were highlighted in different aglycone-based saponins. Glucose (Glc) was revealed to be widely favored in GA and 16-OH-GA with more target aspect of 28-Glc in 16-OH-GA and relatively shared distribution between C28 (mainly) C3 and C23 in GA. Strong competition for galactose (Gal) was highlighted between C3 and C28 with target aspects to 28-Gal in GA and 3-Gal in (Gyp, QA). Gyp and QA showed higher regulations of pentoses (xylose, Xyl; arabinose, Ara) with more affinity of GA for (3-Ara, 28-Xyl) and 16-OH-GA for (3-Xyl, 28-Ara). These results call for further investments in simulations of glycosylation mechanisms helping for better understanding metabolic aspects of saponins, and encouraging future analytic experiments in the field.","PeriodicalId":337320,"journal":{"name":"Proceedings of MOL2NET 2019, International Conference on Multidisciplinary Sciences, 5th edition","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Highlighting glycosylation ways in Caryophyllaceae saponins by simplex simulation approach\",\"authors\":\"Asma Hammami, M. Farman, N. Semmar\",\"doi\":\"10.3390/mol2net-05-06386\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Glycosylation mechanisms in saponins of Caryophyllaceae plant family were subjected to simulation by statistically exploring variability of 231 chemical structures belonging to four different aglycones: gypsogenin (Gyp), quillaic acid (QA), gypsogenic acid (GA), 16-OH-gypsogenic acid (16-OH-GA). Saponins based on different aglycones were initially characterized by relative glycosylation levels of different carbons. Simulation was initialized by combining the four saponin groups using Scheffe’s mixture design which provides a complete set of N gradual weightings of groups. Combined saponins were randomly and iteratively sampled from different groups by bootstrap technique. For a same combination, saponins were averaged leading to barycentric glycosylation profile. Iterations of the N barycentric profiles and averaging provided a final response matrix of N smoothed glycosylation profiles from which regulation mechanisms of carbons were highlighted in different aglycone-based saponins. Glucose (Glc) was revealed to be widely favored in GA and 16-OH-GA with more target aspect of 28-Glc in 16-OH-GA and relatively shared distribution between C28 (mainly) C3 and C23 in GA. Strong competition for galactose (Gal) was highlighted between C3 and C28 with target aspects to 28-Gal in GA and 3-Gal in (Gyp, QA). Gyp and QA showed higher regulations of pentoses (xylose, Xyl; arabinose, Ara) with more affinity of GA for (3-Ara, 28-Xyl) and 16-OH-GA for (3-Xyl, 28-Ara). These results call for further investments in simulations of glycosylation mechanisms helping for better understanding metabolic aspects of saponins, and encouraging future analytic experiments in the field.\",\"PeriodicalId\":337320,\"journal\":{\"name\":\"Proceedings of MOL2NET 2019, International Conference on Multidisciplinary Sciences, 5th edition\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of MOL2NET 2019, International Conference on Multidisciplinary Sciences, 5th edition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/mol2net-05-06386\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of MOL2NET 2019, International Conference on Multidisciplinary Sciences, 5th edition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/mol2net-05-06386","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

通过统计分析石膏原素(Gyp)、香桐酸(QA)、石膏原酸(GA)、16- oh -石膏原酸(16-OH-GA)四种不同苷元的231种化学结构的变异,模拟了石竹科植物皂苷的糖基化机制。基于不同苷元的皂苷最初通过不同碳的相对糖基化水平来表征。采用Scheffe的混合设计,将四种皂苷组组合,初始化模拟,该设计提供了一套完整的N个逐渐加权组。采用自举法从不同组中随机迭代取样组合皂苷。对于相同的组合,皂苷被平均导致重心糖基化谱。N质心谱的迭代和平均得到了N平滑糖基化谱的最终响应矩阵,从中突出了碳在不同苷基皂苷中的调节机制。葡萄糖(Glc)在GA和16-OH-GA中被广泛偏爱,在16-OH-GA中28-Glc的靶点更多,而在GA中C28(主要是)C3和C23之间的分布相对共享。C3和C28之间对半乳糖(Gal)的激烈竞争突出,目标方面是GA中的28-Gal和GA中的3-Gal (Gyp, QA)。Gyp和QA对戊糖(木糖、Xyl;GA对(3-Ara, 28-Xyl)和(3-Xyl, 28-Ara)具有更强的亲和力。这些结果呼吁进一步投资于糖基化机制的模拟,以帮助更好地理解皂苷的代谢方面,并鼓励未来在该领域的分析实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Highlighting glycosylation ways in Caryophyllaceae saponins by simplex simulation approach
Glycosylation mechanisms in saponins of Caryophyllaceae plant family were subjected to simulation by statistically exploring variability of 231 chemical structures belonging to four different aglycones: gypsogenin (Gyp), quillaic acid (QA), gypsogenic acid (GA), 16-OH-gypsogenic acid (16-OH-GA). Saponins based on different aglycones were initially characterized by relative glycosylation levels of different carbons. Simulation was initialized by combining the four saponin groups using Scheffe’s mixture design which provides a complete set of N gradual weightings of groups. Combined saponins were randomly and iteratively sampled from different groups by bootstrap technique. For a same combination, saponins were averaged leading to barycentric glycosylation profile. Iterations of the N barycentric profiles and averaging provided a final response matrix of N smoothed glycosylation profiles from which regulation mechanisms of carbons were highlighted in different aglycone-based saponins. Glucose (Glc) was revealed to be widely favored in GA and 16-OH-GA with more target aspect of 28-Glc in 16-OH-GA and relatively shared distribution between C28 (mainly) C3 and C23 in GA. Strong competition for galactose (Gal) was highlighted between C3 and C28 with target aspects to 28-Gal in GA and 3-Gal in (Gyp, QA). Gyp and QA showed higher regulations of pentoses (xylose, Xyl; arabinose, Ara) with more affinity of GA for (3-Ara, 28-Xyl) and 16-OH-GA for (3-Xyl, 28-Ara). These results call for further investments in simulations of glycosylation mechanisms helping for better understanding metabolic aspects of saponins, and encouraging future analytic experiments in the field.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信