一种多任务卷积神经网络联合虹膜检测与表示攻击检测

Cunjian Chen, A. Ross
{"title":"一种多任务卷积神经网络联合虹膜检测与表示攻击检测","authors":"Cunjian Chen, A. Ross","doi":"10.1109/WACVW.2018.00011","DOIUrl":null,"url":null,"abstract":"In this work, we propose a multi-task convolutional neural network learning approach that can simultaneously perform iris localization and presentation attack detection (PAD). The proposed multi-task PAD (MT-PAD) is inspired by an object detection method which directly regresses the parameters of the iris bounding box and computes the probability of presentation attack from the input ocular image. Experiments involving both intra-sensor and cross-sensor scenarios suggest that the proposed method can achieve state-of-the-art results on publicly available datasets. To the best of our knowledge, this is the first work that performs iris detection and iris presentation attack detection simultaneously.","PeriodicalId":301220,"journal":{"name":"2018 IEEE Winter Applications of Computer Vision Workshops (WACVW)","volume":"03 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"64","resultStr":"{\"title\":\"A Multi-task Convolutional Neural Network for Joint Iris Detection and Presentation Attack Detection\",\"authors\":\"Cunjian Chen, A. Ross\",\"doi\":\"10.1109/WACVW.2018.00011\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we propose a multi-task convolutional neural network learning approach that can simultaneously perform iris localization and presentation attack detection (PAD). The proposed multi-task PAD (MT-PAD) is inspired by an object detection method which directly regresses the parameters of the iris bounding box and computes the probability of presentation attack from the input ocular image. Experiments involving both intra-sensor and cross-sensor scenarios suggest that the proposed method can achieve state-of-the-art results on publicly available datasets. To the best of our knowledge, this is the first work that performs iris detection and iris presentation attack detection simultaneously.\",\"PeriodicalId\":301220,\"journal\":{\"name\":\"2018 IEEE Winter Applications of Computer Vision Workshops (WACVW)\",\"volume\":\"03 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"64\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Winter Applications of Computer Vision Workshops (WACVW)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WACVW.2018.00011\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Winter Applications of Computer Vision Workshops (WACVW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACVW.2018.00011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 64

摘要

在这项工作中,我们提出了一种多任务卷积神经网络学习方法,可以同时执行虹膜定位和呈现攻击检测(PAD)。本文提出的多任务PAD (MT-PAD)的灵感来自于一种目标检测方法,该方法直接回归虹膜边界框的参数,并从输入的眼图像中计算呈现攻击的概率。涉及传感器内和跨传感器场景的实验表明,所提出的方法可以在公开可用的数据集上获得最先进的结果。据我们所知,这是第一个同时进行虹膜检测和虹膜表示攻击检测的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Multi-task Convolutional Neural Network for Joint Iris Detection and Presentation Attack Detection
In this work, we propose a multi-task convolutional neural network learning approach that can simultaneously perform iris localization and presentation attack detection (PAD). The proposed multi-task PAD (MT-PAD) is inspired by an object detection method which directly regresses the parameters of the iris bounding box and computes the probability of presentation attack from the input ocular image. Experiments involving both intra-sensor and cross-sensor scenarios suggest that the proposed method can achieve state-of-the-art results on publicly available datasets. To the best of our knowledge, this is the first work that performs iris detection and iris presentation attack detection simultaneously.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信