智能监控环境下的间隙填充算法分析

M. Peixoto, Igo Souza, Matheus Barbosa, G. Lecomte, Dionisio Machado Leite Filho, Bruno Guazzelli, B. Kuehne
{"title":"智能监控环境下的间隙填充算法分析","authors":"M. Peixoto, Igo Souza, Matheus Barbosa, G. Lecomte, Dionisio Machado Leite Filho, Bruno Guazzelli, B. Kuehne","doi":"10.1109/ISCC.2018.8538768","DOIUrl":null,"url":null,"abstract":"There are a large number of cameras distributed throughout smart cities. As amount as the number of cameras increases, a huge streaming workload is produced. Although Fog computing has been used to reduce latency and jitter, Gateways IoT are unable to identify whether the data produced is invalid or absent, affecting the quality of service. Therefore, this paper presents an analysis of gap filling algorithms to smart surveillance environment. Our study shows that it is possible to maximize the accuracy of data imputation. Performance evaluation shows significant improvements in the imputation of missing data using Singular Spectrum Analysis (SSA), increasing the accuracy in the estimation of the Streaming video, and thus improving the quality of service.","PeriodicalId":233592,"journal":{"name":"2018 IEEE Symposium on Computers and Communications (ISCC)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Analysis of gap filling algorithms to smart surveillance environment\",\"authors\":\"M. Peixoto, Igo Souza, Matheus Barbosa, G. Lecomte, Dionisio Machado Leite Filho, Bruno Guazzelli, B. Kuehne\",\"doi\":\"10.1109/ISCC.2018.8538768\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"There are a large number of cameras distributed throughout smart cities. As amount as the number of cameras increases, a huge streaming workload is produced. Although Fog computing has been used to reduce latency and jitter, Gateways IoT are unable to identify whether the data produced is invalid or absent, affecting the quality of service. Therefore, this paper presents an analysis of gap filling algorithms to smart surveillance environment. Our study shows that it is possible to maximize the accuracy of data imputation. Performance evaluation shows significant improvements in the imputation of missing data using Singular Spectrum Analysis (SSA), increasing the accuracy in the estimation of the Streaming video, and thus improving the quality of service.\",\"PeriodicalId\":233592,\"journal\":{\"name\":\"2018 IEEE Symposium on Computers and Communications (ISCC)\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Symposium on Computers and Communications (ISCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCC.2018.8538768\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Symposium on Computers and Communications (ISCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCC.2018.8538768","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

智能城市中分布着大量的摄像头。随着摄像机数量的增加,产生了巨大的流工作负载。虽然雾计算已被用于减少延迟和抖动,但网关物联网无法识别所产生的数据是否无效或缺失,从而影响服务质量。因此,本文对智能监控环境下的间隙填充算法进行了分析。我们的研究表明,最大限度地提高数据输入的准确性是可能的。性能评估表明,使用奇异谱分析(SSA)在缺失数据的估计方面有显著改善,提高了流媒体视频估计的准确性,从而提高了服务质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of gap filling algorithms to smart surveillance environment
There are a large number of cameras distributed throughout smart cities. As amount as the number of cameras increases, a huge streaming workload is produced. Although Fog computing has been used to reduce latency and jitter, Gateways IoT are unable to identify whether the data produced is invalid or absent, affecting the quality of service. Therefore, this paper presents an analysis of gap filling algorithms to smart surveillance environment. Our study shows that it is possible to maximize the accuracy of data imputation. Performance evaluation shows significant improvements in the imputation of missing data using Singular Spectrum Analysis (SSA), increasing the accuracy in the estimation of the Streaming video, and thus improving the quality of service.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信