Tanya Amert, Nathan Otterness, Ming Yang, James H. Anderson, F. D. Smith
{"title":"NVIDIA TX2上的GPU调度:隐藏的细节揭示","authors":"Tanya Amert, Nathan Otterness, Ming Yang, James H. Anderson, F. D. Smith","doi":"10.1109/RTSS.2017.00017","DOIUrl":null,"url":null,"abstract":"The push towards fielding autonomous-driving capabilities in vehicles is happening at breakneck speed. Semi-autonomous features are becoming increasingly common, and fully autonomous vehicles are optimistically forecast to be widely available in just a few years. Today, graphics processing units (GPUs) are seen as a key technology in this push towards greater autonomy. However, realizing full autonomy in mass-production vehicles will necessitate the use of stringent certification processes. Currently available GPUs pose challenges in this regard, as they tend to be closed-source “black boxes” that have features that are not publicly disclosed. For certification to be tenable, such features must be documented. This paper reports on such a documentation effort. This effort was directed at the NVIDIA TX2, which is one of the most prominent GPU-enabled platforms marketed today for autonomous systems. In this paper, important aspects of the TX2’s GPU scheduler are revealed as discerned through experimental testing and validation.","PeriodicalId":407932,"journal":{"name":"2017 IEEE Real-Time Systems Symposium (RTSS)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"151","resultStr":"{\"title\":\"GPU Scheduling on the NVIDIA TX2: Hidden Details Revealed\",\"authors\":\"Tanya Amert, Nathan Otterness, Ming Yang, James H. Anderson, F. D. Smith\",\"doi\":\"10.1109/RTSS.2017.00017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The push towards fielding autonomous-driving capabilities in vehicles is happening at breakneck speed. Semi-autonomous features are becoming increasingly common, and fully autonomous vehicles are optimistically forecast to be widely available in just a few years. Today, graphics processing units (GPUs) are seen as a key technology in this push towards greater autonomy. However, realizing full autonomy in mass-production vehicles will necessitate the use of stringent certification processes. Currently available GPUs pose challenges in this regard, as they tend to be closed-source “black boxes” that have features that are not publicly disclosed. For certification to be tenable, such features must be documented. This paper reports on such a documentation effort. This effort was directed at the NVIDIA TX2, which is one of the most prominent GPU-enabled platforms marketed today for autonomous systems. In this paper, important aspects of the TX2’s GPU scheduler are revealed as discerned through experimental testing and validation.\",\"PeriodicalId\":407932,\"journal\":{\"name\":\"2017 IEEE Real-Time Systems Symposium (RTSS)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"151\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Real-Time Systems Symposium (RTSS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RTSS.2017.00017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Real-Time Systems Symposium (RTSS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RTSS.2017.00017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
GPU Scheduling on the NVIDIA TX2: Hidden Details Revealed
The push towards fielding autonomous-driving capabilities in vehicles is happening at breakneck speed. Semi-autonomous features are becoming increasingly common, and fully autonomous vehicles are optimistically forecast to be widely available in just a few years. Today, graphics processing units (GPUs) are seen as a key technology in this push towards greater autonomy. However, realizing full autonomy in mass-production vehicles will necessitate the use of stringent certification processes. Currently available GPUs pose challenges in this regard, as they tend to be closed-source “black boxes” that have features that are not publicly disclosed. For certification to be tenable, such features must be documented. This paper reports on such a documentation effort. This effort was directed at the NVIDIA TX2, which is one of the most prominent GPU-enabled platforms marketed today for autonomous systems. In this paper, important aspects of the TX2’s GPU scheduler are revealed as discerned through experimental testing and validation.