使用混合方法训练神经观察者

R. Loukil, M. Chtourou, T. Damak
{"title":"使用混合方法训练神经观察者","authors":"R. Loukil, M. Chtourou, T. Damak","doi":"10.1109/SSD.2012.6197985","DOIUrl":null,"url":null,"abstract":"In this work, we use the approach based on observers such as the neural observer in order to introduce the diagnosis of nonlinear systems. There are different techniques for training the neural networks. Among these techniques, we quote the backpropagation technique, the backpropagation technique with momentum and the hybrid one which is a mixture between the backpropagation technique and the sliding variable structure. The robustness of this kind of training for neural observer is tested through a physical example. The obtained results show that the third type of training is better than using a classic kind of training especially concerning the rapidity of convergence.","PeriodicalId":425823,"journal":{"name":"International Multi-Conference on Systems, Sygnals & Devices","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Training a neural observer using a hybrid approach\",\"authors\":\"R. Loukil, M. Chtourou, T. Damak\",\"doi\":\"10.1109/SSD.2012.6197985\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we use the approach based on observers such as the neural observer in order to introduce the diagnosis of nonlinear systems. There are different techniques for training the neural networks. Among these techniques, we quote the backpropagation technique, the backpropagation technique with momentum and the hybrid one which is a mixture between the backpropagation technique and the sliding variable structure. The robustness of this kind of training for neural observer is tested through a physical example. The obtained results show that the third type of training is better than using a classic kind of training especially concerning the rapidity of convergence.\",\"PeriodicalId\":425823,\"journal\":{\"name\":\"International Multi-Conference on Systems, Sygnals & Devices\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Multi-Conference on Systems, Sygnals & Devices\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSD.2012.6197985\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Multi-Conference on Systems, Sygnals & Devices","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSD.2012.6197985","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在这项工作中,我们使用基于观测器(如神经观测器)的方法来引入非线性系统的诊断。训练神经网络有不同的技术。在这些技术中,我们引用了反向传播技术、带动量的反向传播技术以及混合反向传播技术和滑动变结构的混合技术。通过实例验证了这种训练方法对神经观测器的鲁棒性。结果表明,第三种训练方法在收敛速度上优于经典训练方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Training a neural observer using a hybrid approach
In this work, we use the approach based on observers such as the neural observer in order to introduce the diagnosis of nonlinear systems. There are different techniques for training the neural networks. Among these techniques, we quote the backpropagation technique, the backpropagation technique with momentum and the hybrid one which is a mixture between the backpropagation technique and the sliding variable structure. The robustness of this kind of training for neural observer is tested through a physical example. The obtained results show that the third type of training is better than using a classic kind of training especially concerning the rapidity of convergence.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信