Cox进程驱动的无限服务器排队模型的标定

Ruixin Wang, Harsha Honnappa
{"title":"Cox进程驱动的无限服务器排队模型的标定","authors":"Ruixin Wang, Harsha Honnappa","doi":"10.1109/WSC52266.2021.9715351","DOIUrl":null,"url":null,"abstract":"This paper studies the problem of calibrating a $\\text{Cox}/G/\\infty$ infinite server queue to a dataset consisting of the number in the system and the age of the jobs currently in service, sampled at discrete time points. This calibration problem is complicated owing to the fact that the arrival intensity and the service time distribution must be jointly calibrated. Furthermore, maximizing the finite dimensional distribution (FDD) of the number-in-system process (which is the natural calibration objective) is intractable in this setting, since the computation of the FDDs involves an intractable integration over the path measure of the Cox input process. We derive an approximate inference procedure that maximizes a lower bound to the FDDs using stochastic gradient descent. This lower bound is tight when the calibrated parameters coincide with those of the ‘true’ model. We present extensive numerical experiments that demonstrate the efficacy and validity of the proposed method.","PeriodicalId":369368,"journal":{"name":"2021 Winter Simulation Conference (WSC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Calibrating Infinite Server Queueing Models Driven By Cox Processes\",\"authors\":\"Ruixin Wang, Harsha Honnappa\",\"doi\":\"10.1109/WSC52266.2021.9715351\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies the problem of calibrating a $\\\\text{Cox}/G/\\\\infty$ infinite server queue to a dataset consisting of the number in the system and the age of the jobs currently in service, sampled at discrete time points. This calibration problem is complicated owing to the fact that the arrival intensity and the service time distribution must be jointly calibrated. Furthermore, maximizing the finite dimensional distribution (FDD) of the number-in-system process (which is the natural calibration objective) is intractable in this setting, since the computation of the FDDs involves an intractable integration over the path measure of the Cox input process. We derive an approximate inference procedure that maximizes a lower bound to the FDDs using stochastic gradient descent. This lower bound is tight when the calibrated parameters coincide with those of the ‘true’ model. We present extensive numerical experiments that demonstrate the efficacy and validity of the proposed method.\",\"PeriodicalId\":369368,\"journal\":{\"name\":\"2021 Winter Simulation Conference (WSC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 Winter Simulation Conference (WSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WSC52266.2021.9715351\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 Winter Simulation Conference (WSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WSC52266.2021.9715351","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了将一个$\text{Cox}/G/\infty$无限服务器队列校准为一个数据集的问题,该数据集由系统中的数量和当前在服务的作业的年龄组成,在离散的时间点采样。由于到达强度和服务时间分布必须联合校准,因此校准问题比较复杂。此外,在这种情况下,最大化系统数过程的有限维分布(FDD)(这是自然校准目标)是难以处理的,因为FDD的计算涉及对Cox输入过程的路径度量的难以处理的积分。我们推导了一个近似的推理过程,利用随机梯度下降最大化fdd的下界。当校准参数与“真实”模型的参数一致时,这个下界是紧的。我们进行了大量的数值实验,证明了所提出方法的有效性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Calibrating Infinite Server Queueing Models Driven By Cox Processes
This paper studies the problem of calibrating a $\text{Cox}/G/\infty$ infinite server queue to a dataset consisting of the number in the system and the age of the jobs currently in service, sampled at discrete time points. This calibration problem is complicated owing to the fact that the arrival intensity and the service time distribution must be jointly calibrated. Furthermore, maximizing the finite dimensional distribution (FDD) of the number-in-system process (which is the natural calibration objective) is intractable in this setting, since the computation of the FDDs involves an intractable integration over the path measure of the Cox input process. We derive an approximate inference procedure that maximizes a lower bound to the FDDs using stochastic gradient descent. This lower bound is tight when the calibrated parameters coincide with those of the ‘true’ model. We present extensive numerical experiments that demonstrate the efficacy and validity of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信