{"title":"基于手机位置数据的城市电力负荷预测","authors":"Stefan Selvarajoo, M. Schläpfer, Rui Tan","doi":"10.1109/ACEPT.2018.8610757","DOIUrl":null,"url":null,"abstract":"In recent years, electrical load forecasting has received continuous research efforts aiming to improve the short-term prediction accuracy of local energy demands. However, current methods are not able to take explicitly into account the dynamic spatial population distribution over the course of a day, which is particularly relevant in dense urban areas. In this paper, we harness society-wide mobile phone data to map the time-varying population distribution in the Trentino region, Italy, and to use these insights for a novel electrical load forecasting method. Our results demonstrate that the integration of aggregated mobile phone data yields compelling forecast models.","PeriodicalId":296432,"journal":{"name":"2018 Asian Conference on Energy, Power and Transportation Electrification (ACEPT)","volume":"56 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Urban Electric Load Forecasting with Mobile Phone Location Data\",\"authors\":\"Stefan Selvarajoo, M. Schläpfer, Rui Tan\",\"doi\":\"10.1109/ACEPT.2018.8610757\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In recent years, electrical load forecasting has received continuous research efforts aiming to improve the short-term prediction accuracy of local energy demands. However, current methods are not able to take explicitly into account the dynamic spatial population distribution over the course of a day, which is particularly relevant in dense urban areas. In this paper, we harness society-wide mobile phone data to map the time-varying population distribution in the Trentino region, Italy, and to use these insights for a novel electrical load forecasting method. Our results demonstrate that the integration of aggregated mobile phone data yields compelling forecast models.\",\"PeriodicalId\":296432,\"journal\":{\"name\":\"2018 Asian Conference on Energy, Power and Transportation Electrification (ACEPT)\",\"volume\":\"56 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Asian Conference on Energy, Power and Transportation Electrification (ACEPT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACEPT.2018.8610757\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Asian Conference on Energy, Power and Transportation Electrification (ACEPT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACEPT.2018.8610757","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Urban Electric Load Forecasting with Mobile Phone Location Data
In recent years, electrical load forecasting has received continuous research efforts aiming to improve the short-term prediction accuracy of local energy demands. However, current methods are not able to take explicitly into account the dynamic spatial population distribution over the course of a day, which is particularly relevant in dense urban areas. In this paper, we harness society-wide mobile phone data to map the time-varying population distribution in the Trentino region, Italy, and to use these insights for a novel electrical load forecasting method. Our results demonstrate that the integration of aggregated mobile phone data yields compelling forecast models.