切片平均三阶矩估计的局部影响分析

Weidong Rao, Xiaofei Liu, Fei Chen
{"title":"切片平均三阶矩估计的局部影响分析","authors":"Weidong Rao, Xiaofei Liu, Fei Chen","doi":"10.1002/sam.11575","DOIUrl":null,"url":null,"abstract":"Sliced average third‐moment estimation (SATME) is a typical method for sufficient dimension reduction (SDR) based on high‐order conditional moment. It is useful, particularly in the scenarios of regression mixtures. However, as SATME uses the third‐order conditional moment of the predictors given the response, it may not as robust as some other SDR methods that use lower order moments, say, sliced inverse regression (SIR) and slice average variance estimation (SAVE). Based on the space displacement function, a local influence analysis framework of SATME is constructed including a statistic of influence assessment for the observations. Furthermore, a data‐trimming strategy is suggested based on the above influence assessment. The proposed methodologies solve a typical issue that also exists in some other SDR methods. A real‐data analysis and simulations are presented.","PeriodicalId":342679,"journal":{"name":"Statistical Analysis and Data Mining: The ASA Data Science Journal","volume":"59 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Local influence analysis for the sliced average third‐moment estimation\",\"authors\":\"Weidong Rao, Xiaofei Liu, Fei Chen\",\"doi\":\"10.1002/sam.11575\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sliced average third‐moment estimation (SATME) is a typical method for sufficient dimension reduction (SDR) based on high‐order conditional moment. It is useful, particularly in the scenarios of regression mixtures. However, as SATME uses the third‐order conditional moment of the predictors given the response, it may not as robust as some other SDR methods that use lower order moments, say, sliced inverse regression (SIR) and slice average variance estimation (SAVE). Based on the space displacement function, a local influence analysis framework of SATME is constructed including a statistic of influence assessment for the observations. Furthermore, a data‐trimming strategy is suggested based on the above influence assessment. The proposed methodologies solve a typical issue that also exists in some other SDR methods. A real‐data analysis and simulations are presented.\",\"PeriodicalId\":342679,\"journal\":{\"name\":\"Statistical Analysis and Data Mining: The ASA Data Science Journal\",\"volume\":\"59 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Analysis and Data Mining: The ASA Data Science Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/sam.11575\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Analysis and Data Mining: The ASA Data Science Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/sam.11575","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

切片平均三阶矩估计(SATME)是基于高阶条件矩的充分降维(SDR)的典型方法。它是有用的,特别是在回归混合的情况下。然而,由于SATME使用给定响应的预测器的三阶条件矩,它可能不像其他一些使用低阶矩的SDR方法那样鲁棒,例如切片逆回归(SIR)和切片平均方差估计(SAVE)。基于空间位移函数,构建了SATME局部影响分析框架,并对观测值进行了影响评估统计。此外,在上述影响评估的基础上,提出了一种数据修剪策略。所提出的方法解决了其他SDR方法中也存在的一个典型问题。给出了实际数据分析和仿真结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Local influence analysis for the sliced average third‐moment estimation
Sliced average third‐moment estimation (SATME) is a typical method for sufficient dimension reduction (SDR) based on high‐order conditional moment. It is useful, particularly in the scenarios of regression mixtures. However, as SATME uses the third‐order conditional moment of the predictors given the response, it may not as robust as some other SDR methods that use lower order moments, say, sliced inverse regression (SIR) and slice average variance estimation (SAVE). Based on the space displacement function, a local influence analysis framework of SATME is constructed including a statistic of influence assessment for the observations. Furthermore, a data‐trimming strategy is suggested based on the above influence assessment. The proposed methodologies solve a typical issue that also exists in some other SDR methods. A real‐data analysis and simulations are presented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信