{"title":"基于遗传算法的神经网络连接拓扑优化应用","authors":"E. Smuda, K. Krishnakumar","doi":"10.1109/SSST.1993.522797","DOIUrl":null,"url":null,"abstract":"A genetic algorithm (GA) is used to explore the connection space of an artificial neural network (ANN) with the objective of finding a sparsely connected network that yields the same accuracy as a fully connected network. Such sparsity is desired as it improves the generalization capabilities of the mapping. The ANN with the GA-chosen set of connections is then trained using a supervised mode of learning known as backpropagation error. Using this technique, three different applications are analyzed.","PeriodicalId":260036,"journal":{"name":"1993 (25th) Southeastern Symposium on System Theory","volume":"13 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Applications of GA-based optimization of neural network connection topology\",\"authors\":\"E. Smuda, K. Krishnakumar\",\"doi\":\"10.1109/SSST.1993.522797\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A genetic algorithm (GA) is used to explore the connection space of an artificial neural network (ANN) with the objective of finding a sparsely connected network that yields the same accuracy as a fully connected network. Such sparsity is desired as it improves the generalization capabilities of the mapping. The ANN with the GA-chosen set of connections is then trained using a supervised mode of learning known as backpropagation error. Using this technique, three different applications are analyzed.\",\"PeriodicalId\":260036,\"journal\":{\"name\":\"1993 (25th) Southeastern Symposium on System Theory\",\"volume\":\"13 3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1993 (25th) Southeastern Symposium on System Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSST.1993.522797\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1993 (25th) Southeastern Symposium on System Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSST.1993.522797","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Applications of GA-based optimization of neural network connection topology
A genetic algorithm (GA) is used to explore the connection space of an artificial neural network (ANN) with the objective of finding a sparsely connected network that yields the same accuracy as a fully connected network. Such sparsity is desired as it improves the generalization capabilities of the mapping. The ANN with the GA-chosen set of connections is then trained using a supervised mode of learning known as backpropagation error. Using this technique, three different applications are analyzed.