基于遗传算法的神经网络连接拓扑优化应用

E. Smuda, K. Krishnakumar
{"title":"基于遗传算法的神经网络连接拓扑优化应用","authors":"E. Smuda, K. Krishnakumar","doi":"10.1109/SSST.1993.522797","DOIUrl":null,"url":null,"abstract":"A genetic algorithm (GA) is used to explore the connection space of an artificial neural network (ANN) with the objective of finding a sparsely connected network that yields the same accuracy as a fully connected network. Such sparsity is desired as it improves the generalization capabilities of the mapping. The ANN with the GA-chosen set of connections is then trained using a supervised mode of learning known as backpropagation error. Using this technique, three different applications are analyzed.","PeriodicalId":260036,"journal":{"name":"1993 (25th) Southeastern Symposium on System Theory","volume":"13 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1993-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Applications of GA-based optimization of neural network connection topology\",\"authors\":\"E. Smuda, K. Krishnakumar\",\"doi\":\"10.1109/SSST.1993.522797\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A genetic algorithm (GA) is used to explore the connection space of an artificial neural network (ANN) with the objective of finding a sparsely connected network that yields the same accuracy as a fully connected network. Such sparsity is desired as it improves the generalization capabilities of the mapping. The ANN with the GA-chosen set of connections is then trained using a supervised mode of learning known as backpropagation error. Using this technique, three different applications are analyzed.\",\"PeriodicalId\":260036,\"journal\":{\"name\":\"1993 (25th) Southeastern Symposium on System Theory\",\"volume\":\"13 3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1993-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1993 (25th) Southeastern Symposium on System Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSST.1993.522797\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1993 (25th) Southeastern Symposium on System Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSST.1993.522797","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

遗传算法(GA)用于探索人工神经网络(ANN)的连接空间,目的是寻找具有与完全连接网络相同精度的稀疏连接网络。这种稀疏性是需要的,因为它提高了映射的泛化能力。然后使用一种被称为反向传播误差的监督学习模式来训练具有ga选择的连接集的人工神经网络。使用这种技术,分析了三种不同的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Applications of GA-based optimization of neural network connection topology
A genetic algorithm (GA) is used to explore the connection space of an artificial neural network (ANN) with the objective of finding a sparsely connected network that yields the same accuracy as a fully connected network. Such sparsity is desired as it improves the generalization capabilities of the mapping. The ANN with the GA-chosen set of connections is then trained using a supervised mode of learning known as backpropagation error. Using this technique, three different applications are analyzed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信