组合优化中多智能体框架下强化学习的奖励形成分析

Jardell Fillipe da Silva, Maria Amélia Lopes Silva, S. R. Souza
{"title":"组合优化中多智能体框架下强化学习的奖励形成分析","authors":"Jardell Fillipe da Silva, Maria Amélia Lopes Silva, S. R. Souza","doi":"10.5753/eniac.2022.227627","DOIUrl":null,"url":null,"abstract":"Este trabalho avalia modelagens de recompensas para o algoritmo de aprendizado usado por um framework multiagente para otimização combinatória. Esta avaliação consiste em seis cenários diferentes de modelagem de recompensas, aplicados a um conjunto de agentes idênticos construídos no framework, que implementam a metaheurística Iterated Local Search (ILS) para a solução do Problema de Roteamento de Veículos com Janelas de Tempo. Testes computacionais, aplicados a instâncias da literatura, mostram que os resultados obtidos para as diversas formas de recompensa são comparáveis quanto a qualidade dos valores de função objetivo alcançados, ao tempo de execução, e à velocidade de aprendizado frente a resultados já existentes na literatura. As conclusões mostram que é possível definir uma forma de aprendizado que seja autônoma quanto ao conhecimento do problema objeto de interesse e eficiente no que diz respeito a tempo computacional e velocidade de aprendizado.","PeriodicalId":165095,"journal":{"name":"Anais do XIX Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2022)","volume":"64 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An analysis of reward shaping for reinforcement learning in a multi-agent framework for combinatorial optimization\",\"authors\":\"Jardell Fillipe da Silva, Maria Amélia Lopes Silva, S. R. Souza\",\"doi\":\"10.5753/eniac.2022.227627\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Este trabalho avalia modelagens de recompensas para o algoritmo de aprendizado usado por um framework multiagente para otimização combinatória. Esta avaliação consiste em seis cenários diferentes de modelagem de recompensas, aplicados a um conjunto de agentes idênticos construídos no framework, que implementam a metaheurística Iterated Local Search (ILS) para a solução do Problema de Roteamento de Veículos com Janelas de Tempo. Testes computacionais, aplicados a instâncias da literatura, mostram que os resultados obtidos para as diversas formas de recompensa são comparáveis quanto a qualidade dos valores de função objetivo alcançados, ao tempo de execução, e à velocidade de aprendizado frente a resultados já existentes na literatura. As conclusões mostram que é possível definir uma forma de aprendizado que seja autônoma quanto ao conhecimento do problema objeto de interesse e eficiente no que diz respeito a tempo computacional e velocidade de aprendizado.\",\"PeriodicalId\":165095,\"journal\":{\"name\":\"Anais do XIX Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2022)\",\"volume\":\"64 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-11-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anais do XIX Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2022)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5753/eniac.2022.227627\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do XIX Encontro Nacional de Inteligência Artificial e Computacional (ENIAC 2022)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/eniac.2022.227627","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文评估了多智能体框架组合优化学习算法的奖励模型。该评估包括六种不同的奖励建模场景,应用于框架中构建的一组相同的代理,实现元启发式迭代局部搜索(ILS)来解决带有时间窗口的车辆路径问题。应用于文献实例的计算测试表明,与文献中已有的结果相比,各种奖励形式的结果在目标函数值的质量、执行时间和学习速度方面具有可比性。结论表明,可以定义一种自主的学习形式,即对感兴趣的问题对象的知识,在计算时间和学习速度方面是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An analysis of reward shaping for reinforcement learning in a multi-agent framework for combinatorial optimization
Este trabalho avalia modelagens de recompensas para o algoritmo de aprendizado usado por um framework multiagente para otimização combinatória. Esta avaliação consiste em seis cenários diferentes de modelagem de recompensas, aplicados a um conjunto de agentes idênticos construídos no framework, que implementam a metaheurística Iterated Local Search (ILS) para a solução do Problema de Roteamento de Veículos com Janelas de Tempo. Testes computacionais, aplicados a instâncias da literatura, mostram que os resultados obtidos para as diversas formas de recompensa são comparáveis quanto a qualidade dos valores de função objetivo alcançados, ao tempo de execução, e à velocidade de aprendizado frente a resultados já existentes na literatura. As conclusões mostram que é possível definir uma forma de aprendizado que seja autônoma quanto ao conhecimento do problema objeto de interesse e eficiente no que diz respeito a tempo computacional e velocidade de aprendizado.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信