无人机辅助大规模MIMO系统中基于pso的联合无人机定位与混合预编码

M. Mahmood, Asil Koç, T. Le-Ngoc
{"title":"无人机辅助大规模MIMO系统中基于pso的联合无人机定位与混合预编码","authors":"M. Mahmood, Asil Koç, T. Le-Ngoc","doi":"10.1109/VTC2022-Fall57202.2022.10013077","DOIUrl":null,"url":null,"abstract":"This work studies the joint design of hybrid pre-coding (HP) and optimal positioning of unmanned aerial vehicle (UAV) relay in a millimeter-wave (mmWave) multi-user massive multiple-input multiple-output (MU-mMIMO) systems to maximize the spectral and energy efficiencies. The UAV operates as a flying wireless relay, expanding a base station’s coverage and delivering capacity boost to a group of users/devices that are obscured by obstructions. We explore the geometry-based mmWave channel model for the UAV-User link and propose joint HP and UAV positioning scheme (JHPP). In particular, the RF beamformer is designed using singular value decomposition (SVD) of channel matrix by incorporating users’ angle-of-departure (AoD) information to reduce the number of radio frequency (RF) chains, and the baseband (BB) precoder is designed using regularized zero-forcing (RZF) technique to mitigate MU interference. Then, using a particle swarm optimization-based location algorithm (PSO-L), a constrained optimization problem with the goal of maximizing the achievable sum-rate (ASR) is constructed for the optimal UAV placement in the given search space. Illustrative results show that the integration of a UAV relay considerably enhances the performance of mmWave MU-mMIMO systems when the BS is remote. Moreover, compared to UAV random placement in the given flying span, PSO-L based UAV positioning has higher spectral/energy efficiency. Finally, the use of a hemispherical array (HSA) configuration at UAV relay can further increase the performance when compared to uniform rectangular array (URA).","PeriodicalId":326047,"journal":{"name":"2022 IEEE 96th Vehicular Technology Conference (VTC2022-Fall)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"PSO-Based Joint UAV Positioning and Hybrid Precoding in UAV-Assisted Massive MIMO Systems\",\"authors\":\"M. Mahmood, Asil Koç, T. Le-Ngoc\",\"doi\":\"10.1109/VTC2022-Fall57202.2022.10013077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work studies the joint design of hybrid pre-coding (HP) and optimal positioning of unmanned aerial vehicle (UAV) relay in a millimeter-wave (mmWave) multi-user massive multiple-input multiple-output (MU-mMIMO) systems to maximize the spectral and energy efficiencies. The UAV operates as a flying wireless relay, expanding a base station’s coverage and delivering capacity boost to a group of users/devices that are obscured by obstructions. We explore the geometry-based mmWave channel model for the UAV-User link and propose joint HP and UAV positioning scheme (JHPP). In particular, the RF beamformer is designed using singular value decomposition (SVD) of channel matrix by incorporating users’ angle-of-departure (AoD) information to reduce the number of radio frequency (RF) chains, and the baseband (BB) precoder is designed using regularized zero-forcing (RZF) technique to mitigate MU interference. Then, using a particle swarm optimization-based location algorithm (PSO-L), a constrained optimization problem with the goal of maximizing the achievable sum-rate (ASR) is constructed for the optimal UAV placement in the given search space. Illustrative results show that the integration of a UAV relay considerably enhances the performance of mmWave MU-mMIMO systems when the BS is remote. Moreover, compared to UAV random placement in the given flying span, PSO-L based UAV positioning has higher spectral/energy efficiency. Finally, the use of a hemispherical array (HSA) configuration at UAV relay can further increase the performance when compared to uniform rectangular array (URA).\",\"PeriodicalId\":326047,\"journal\":{\"name\":\"2022 IEEE 96th Vehicular Technology Conference (VTC2022-Fall)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 96th Vehicular Technology Conference (VTC2022-Fall)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VTC2022-Fall57202.2022.10013077\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 96th Vehicular Technology Conference (VTC2022-Fall)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VTC2022-Fall57202.2022.10013077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文研究了毫米波(mmWave)多用户大规模多输入多输出(MU-mMIMO)系统中无人机(UAV)中继的混合预编码(HP)和优化定位的联合设计,以最大限度地提高频谱和能量效率。UAV作为飞行无线中继器操作,扩展基站的覆盖范围并向被障碍物遮挡的一组用户/设备提供容量提升。我们探索了无人机-用户链路的基于几何的毫米波信道模型,并提出了联合HP和无人机定位方案(JHPP)。其中,射频波束形成器采用信道矩阵的奇异值分解(SVD),结合用户的出发角(AoD)信息,减少射频(RF)链的数量;基带(BB)预编码器采用正则化零强迫(RZF)技术,减轻MU干扰。然后,利用基于粒子群优化的定位算法(PSO-L),构造了一个以最大可达和率(ASR)为目标的约束优化问题,在给定的搜索空间中实现无人机的最优布局;算例结果表明,无人机中继的集成大大提高了毫米波MU-mMIMO系统的性能,当BS是远程的。此外,与无人机在给定飞行跨度内的随机布局相比,基于PSO-L的无人机定位具有更高的频谱/能量效率。最后,与均匀矩形阵列(URA)相比,在无人机中继上使用半球形阵列(HSA)配置可以进一步提高性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
PSO-Based Joint UAV Positioning and Hybrid Precoding in UAV-Assisted Massive MIMO Systems
This work studies the joint design of hybrid pre-coding (HP) and optimal positioning of unmanned aerial vehicle (UAV) relay in a millimeter-wave (mmWave) multi-user massive multiple-input multiple-output (MU-mMIMO) systems to maximize the spectral and energy efficiencies. The UAV operates as a flying wireless relay, expanding a base station’s coverage and delivering capacity boost to a group of users/devices that are obscured by obstructions. We explore the geometry-based mmWave channel model for the UAV-User link and propose joint HP and UAV positioning scheme (JHPP). In particular, the RF beamformer is designed using singular value decomposition (SVD) of channel matrix by incorporating users’ angle-of-departure (AoD) information to reduce the number of radio frequency (RF) chains, and the baseband (BB) precoder is designed using regularized zero-forcing (RZF) technique to mitigate MU interference. Then, using a particle swarm optimization-based location algorithm (PSO-L), a constrained optimization problem with the goal of maximizing the achievable sum-rate (ASR) is constructed for the optimal UAV placement in the given search space. Illustrative results show that the integration of a UAV relay considerably enhances the performance of mmWave MU-mMIMO systems when the BS is remote. Moreover, compared to UAV random placement in the given flying span, PSO-L based UAV positioning has higher spectral/energy efficiency. Finally, the use of a hemispherical array (HSA) configuration at UAV relay can further increase the performance when compared to uniform rectangular array (URA).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信