D. Sakyi-Arthur, S. Mensah, K. Adu, K. Dompreh, R. Edziah, N. G. Mensah, C. Jebuni-Adanu
{"title":"半导体氟化碳纳米管中声子诱导的类霍尔电流","authors":"D. Sakyi-Arthur, S. Mensah, K. Adu, K. Dompreh, R. Edziah, N. G. Mensah, C. Jebuni-Adanu","doi":"10.4236/wjcmp.2020.102005","DOIUrl":null,"url":null,"abstract":"We show that Hall-like current can be induced by acoustic phonons in a nondegenerate, semiconductor fluorine-doped single-walled carbon nanotube (FSWCNT) using a tractable analytical approach in the hypersound regime (q is the modulus of the acoustic wavevector and is the electron mean free path). We observed a strong dependence of the Hall-like current on the magnetic field, H, the acoustic wave frequency, , the temperature, T, the overlapping integral, , and the acoustic wavenumber, q. Qualitatively, the Hall-like current exists even if the relaxation time does not depend on the carrier energy but has a strong spatial dispersion, and gives different results compared to that obtained in bulk semiconductors. For and , the Hall-like current is in the absence of an electric field and in the presence of an electric field at 300 K. Similarly, the surface electric field due to the Hall-like current is in the absence of an external electric field. In the presence of an external electric field, and for at 300 K. q and can be used to tune the Hall-like current and of the FSWCNT. This offers the potential for room temperature application as an acoustic switch or transistor, as well as a material for ultrasound current source density imaging (UCSDI) and AE hydrophone device in biomedical engineering.","PeriodicalId":308307,"journal":{"name":"World Journal of Condensed Matter Physics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Induced Hall-Like Current by Acoustic Phonons in Semiconductor Fluorinated Carbon Nanotube\",\"authors\":\"D. Sakyi-Arthur, S. Mensah, K. Adu, K. Dompreh, R. Edziah, N. G. Mensah, C. Jebuni-Adanu\",\"doi\":\"10.4236/wjcmp.2020.102005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We show that Hall-like current can be induced by acoustic phonons in a nondegenerate, semiconductor fluorine-doped single-walled carbon nanotube (FSWCNT) using a tractable analytical approach in the hypersound regime (q is the modulus of the acoustic wavevector and is the electron mean free path). We observed a strong dependence of the Hall-like current on the magnetic field, H, the acoustic wave frequency, , the temperature, T, the overlapping integral, , and the acoustic wavenumber, q. Qualitatively, the Hall-like current exists even if the relaxation time does not depend on the carrier energy but has a strong spatial dispersion, and gives different results compared to that obtained in bulk semiconductors. For and , the Hall-like current is in the absence of an electric field and in the presence of an electric field at 300 K. Similarly, the surface electric field due to the Hall-like current is in the absence of an external electric field. In the presence of an external electric field, and for at 300 K. q and can be used to tune the Hall-like current and of the FSWCNT. This offers the potential for room temperature application as an acoustic switch or transistor, as well as a material for ultrasound current source density imaging (UCSDI) and AE hydrophone device in biomedical engineering.\",\"PeriodicalId\":308307,\"journal\":{\"name\":\"World Journal of Condensed Matter Physics\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"World Journal of Condensed Matter Physics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4236/wjcmp.2020.102005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"World Journal of Condensed Matter Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4236/wjcmp.2020.102005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Induced Hall-Like Current by Acoustic Phonons in Semiconductor Fluorinated Carbon Nanotube
We show that Hall-like current can be induced by acoustic phonons in a nondegenerate, semiconductor fluorine-doped single-walled carbon nanotube (FSWCNT) using a tractable analytical approach in the hypersound regime (q is the modulus of the acoustic wavevector and is the electron mean free path). We observed a strong dependence of the Hall-like current on the magnetic field, H, the acoustic wave frequency, , the temperature, T, the overlapping integral, , and the acoustic wavenumber, q. Qualitatively, the Hall-like current exists even if the relaxation time does not depend on the carrier energy but has a strong spatial dispersion, and gives different results compared to that obtained in bulk semiconductors. For and , the Hall-like current is in the absence of an electric field and in the presence of an electric field at 300 K. Similarly, the surface electric field due to the Hall-like current is in the absence of an external electric field. In the presence of an external electric field, and for at 300 K. q and can be used to tune the Hall-like current and of the FSWCNT. This offers the potential for room temperature application as an acoustic switch or transistor, as well as a material for ultrasound current source density imaging (UCSDI) and AE hydrophone device in biomedical engineering.