SE-VPR:语义增强VPR视觉定位方法

Haoyuan Pei, Ji-kai Wang, Zonghai Chen
{"title":"SE-VPR:语义增强VPR视觉定位方法","authors":"Haoyuan Pei, Ji-kai Wang, Zonghai Chen","doi":"10.1109/CACML55074.2022.00131","DOIUrl":null,"url":null,"abstract":"Visual Place Recognition (VPR) is a significant task for robotics and autonomous system. However, existing VPR methods ignored the high-level semantic scene information and performed poorly in the symmetrical scene. This paper introduces SE-VPR, which encodes the relative geometric relationship among semantic regions into image global descriptor to overcome the confusion in the symmetrical scene and improve the recall of the coarse localization step of the hierarchical localization paradigm. The proposed VPR algorithm is evaluated and analyzed on the real dataset to verify its effectiveness and superiority. Finally, the dataset used in the experiment is disclosed, which can be used to evaluate the localization performance of the VPR algorithm and hierarchical localization algorithm in complex scenes such as symmetrical and repetitive structures.","PeriodicalId":137505,"journal":{"name":"2022 Asia Conference on Algorithms, Computing and Machine Learning (CACML)","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SE-VPR: Semantic Enhanced VPR Approach for Visual Localization\",\"authors\":\"Haoyuan Pei, Ji-kai Wang, Zonghai Chen\",\"doi\":\"10.1109/CACML55074.2022.00131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Visual Place Recognition (VPR) is a significant task for robotics and autonomous system. However, existing VPR methods ignored the high-level semantic scene information and performed poorly in the symmetrical scene. This paper introduces SE-VPR, which encodes the relative geometric relationship among semantic regions into image global descriptor to overcome the confusion in the symmetrical scene and improve the recall of the coarse localization step of the hierarchical localization paradigm. The proposed VPR algorithm is evaluated and analyzed on the real dataset to verify its effectiveness and superiority. Finally, the dataset used in the experiment is disclosed, which can be used to evaluate the localization performance of the VPR algorithm and hierarchical localization algorithm in complex scenes such as symmetrical and repetitive structures.\",\"PeriodicalId\":137505,\"journal\":{\"name\":\"2022 Asia Conference on Algorithms, Computing and Machine Learning (CACML)\",\"volume\":\"33 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 Asia Conference on Algorithms, Computing and Machine Learning (CACML)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CACML55074.2022.00131\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Asia Conference on Algorithms, Computing and Machine Learning (CACML)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CACML55074.2022.00131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

视觉位置识别(VPR)是机器人技术和自主系统的重要课题。然而,现有的VPR方法忽略了高级语义场景信息,在对称场景中表现不佳。引入SE-VPR,将语义区域之间的相对几何关系编码为图像全局描述符,克服了对称场景中的混淆,提高了层次定位范式中粗定位步骤的召回率。在实际数据集上对所提出的VPR算法进行了评价和分析,验证了其有效性和优越性。最后,公开了实验中使用的数据集,可用于评估VPR算法和分层定位算法在对称和重复结构等复杂场景下的定位性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SE-VPR: Semantic Enhanced VPR Approach for Visual Localization
Visual Place Recognition (VPR) is a significant task for robotics and autonomous system. However, existing VPR methods ignored the high-level semantic scene information and performed poorly in the symmetrical scene. This paper introduces SE-VPR, which encodes the relative geometric relationship among semantic regions into image global descriptor to overcome the confusion in the symmetrical scene and improve the recall of the coarse localization step of the hierarchical localization paradigm. The proposed VPR algorithm is evaluated and analyzed on the real dataset to verify its effectiveness and superiority. Finally, the dataset used in the experiment is disclosed, which can be used to evaluate the localization performance of the VPR algorithm and hierarchical localization algorithm in complex scenes such as symmetrical and repetitive structures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信