基于连通性推理的在线搜索范围重构

Michael Chan, Stephen Chi-fai Chan, C. Leung
{"title":"基于连通性推理的在线搜索范围重构","authors":"Michael Chan, Stephen Chi-fai Chan, C. Leung","doi":"10.1109/WI.2007.142","DOIUrl":null,"url":null,"abstract":"To cope with the continuing growth of the web, improvements should be made to the current brute-force techniques commonly used by robot-driven search engines. We propose a model that strikes a balance between robot and directory- based search engines by expanding the search scope of conventional directories to automatically include related categories. Our model makes use of a knowledge-rich and well- structured corpus to infer relationships between documents and topic categories. We show that the hyperlink structure ofWikipedia articles can be effectively exploited to identify relations among topic categories. Our experiments show the average recall rate and precision rate achieved are 91% and between 85% and 215% of Google's respectively.","PeriodicalId":192501,"journal":{"name":"IEEE/WIC/ACM International Conference on Web Intelligence (WI'07)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Online Search Scope Reconstruction by Connectivity Inference\",\"authors\":\"Michael Chan, Stephen Chi-fai Chan, C. Leung\",\"doi\":\"10.1109/WI.2007.142\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"To cope with the continuing growth of the web, improvements should be made to the current brute-force techniques commonly used by robot-driven search engines. We propose a model that strikes a balance between robot and directory- based search engines by expanding the search scope of conventional directories to automatically include related categories. Our model makes use of a knowledge-rich and well- structured corpus to infer relationships between documents and topic categories. We show that the hyperlink structure ofWikipedia articles can be effectively exploited to identify relations among topic categories. Our experiments show the average recall rate and precision rate achieved are 91% and between 85% and 215% of Google's respectively.\",\"PeriodicalId\":192501,\"journal\":{\"name\":\"IEEE/WIC/ACM International Conference on Web Intelligence (WI'07)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE/WIC/ACM International Conference on Web Intelligence (WI'07)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WI.2007.142\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/WIC/ACM International Conference on Web Intelligence (WI'07)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WI.2007.142","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了应对网络的持续增长,应该对目前由机器人驱动的搜索引擎普遍使用的暴力搜索技术进行改进。我们提出了一个模型,通过将传统目录的搜索范围扩展到自动包含相关类别,在机器人和基于目录的搜索引擎之间取得平衡。我们的模型利用知识丰富且结构良好的语料库来推断文档和主题类别之间的关系。我们展示了维基百科文章的超链接结构可以有效地用于识别主题类别之间的关系。我们的实验表明,平均召回率和准确率分别达到了Google的91%和85%到215%之间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Online Search Scope Reconstruction by Connectivity Inference
To cope with the continuing growth of the web, improvements should be made to the current brute-force techniques commonly used by robot-driven search engines. We propose a model that strikes a balance between robot and directory- based search engines by expanding the search scope of conventional directories to automatically include related categories. Our model makes use of a knowledge-rich and well- structured corpus to infer relationships between documents and topic categories. We show that the hyperlink structure ofWikipedia articles can be effectively exploited to identify relations among topic categories. Our experiments show the average recall rate and precision rate achieved are 91% and between 85% and 215% of Google's respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信