{"title":"一个简单的低压级联电流反射镜,具有增强的动态性能","authors":"B. Minch","doi":"10.1109/SUBVT.2012.6404308","DOIUrl":null,"url":null,"abstract":"In this paper, we present a simple low-voltage MOS cascode current mirror featuring a step response and an output voltage swing comparable to those of a simple mirror and and output resistance comparable to that of a stacked mirror. The proposed mirror operates with an input voltage of Vdiode+VDSsat and can operate on a minimum supply of Vdiode + 2VDSsat. We validate the proposed mirror with a combination of simulated and measured results from a circuit prototyped from transistor arrays fabricated in a 0.5-μm CMOS process through MOSIS.","PeriodicalId":383826,"journal":{"name":"2012 IEEE Subthreshold Microelectronics Conference (SubVT)","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A simple low-voltage cascode current mirror with enhanced dynamic performance\",\"authors\":\"B. Minch\",\"doi\":\"10.1109/SUBVT.2012.6404308\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a simple low-voltage MOS cascode current mirror featuring a step response and an output voltage swing comparable to those of a simple mirror and and output resistance comparable to that of a stacked mirror. The proposed mirror operates with an input voltage of Vdiode+VDSsat and can operate on a minimum supply of Vdiode + 2VDSsat. We validate the proposed mirror with a combination of simulated and measured results from a circuit prototyped from transistor arrays fabricated in a 0.5-μm CMOS process through MOSIS.\",\"PeriodicalId\":383826,\"journal\":{\"name\":\"2012 IEEE Subthreshold Microelectronics Conference (SubVT)\",\"volume\":\"13 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE Subthreshold Microelectronics Conference (SubVT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SUBVT.2012.6404308\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE Subthreshold Microelectronics Conference (SubVT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SUBVT.2012.6404308","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A simple low-voltage cascode current mirror with enhanced dynamic performance
In this paper, we present a simple low-voltage MOS cascode current mirror featuring a step response and an output voltage swing comparable to those of a simple mirror and and output resistance comparable to that of a stacked mirror. The proposed mirror operates with an input voltage of Vdiode+VDSsat and can operate on a minimum supply of Vdiode + 2VDSsat. We validate the proposed mirror with a combination of simulated and measured results from a circuit prototyped from transistor arrays fabricated in a 0.5-μm CMOS process through MOSIS.