Xiangfang Li, Lijun Qian, M. Bittner, E. Dougherty
{"title":"用卡尔曼滤波评价分子靶向药物的疗效","authors":"Xiangfang Li, Lijun Qian, M. Bittner, E. Dougherty","doi":"10.1109/GENSiPS.2011.6169439","DOIUrl":null,"url":null,"abstract":"A novel preclinical model combining experimental methods and theoretical analysis is proposed to investigate the mechanism of action and identify pharmacodynamic characteristic of a drug. Instead of fixed time point analysis of the drug exposure to drug effect, the time course of drug effect for different doses are quantitatively studied on cell line-based platforms using Kalman filter, where tumor cells' responses to drugs through the use of fluorescent reporters are sampled frequently over a time-course. It is expected that such preclinical study will provide valuable suggestions about dosing regimens for in vivo experimental stage to increase productivity.","PeriodicalId":181666,"journal":{"name":"2011 IEEE International Workshop on Genomic Signal Processing and Statistics (GENSIPS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Assessing the efficacy of molecularly targeted agents by using Kalman filter\",\"authors\":\"Xiangfang Li, Lijun Qian, M. Bittner, E. Dougherty\",\"doi\":\"10.1109/GENSiPS.2011.6169439\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel preclinical model combining experimental methods and theoretical analysis is proposed to investigate the mechanism of action and identify pharmacodynamic characteristic of a drug. Instead of fixed time point analysis of the drug exposure to drug effect, the time course of drug effect for different doses are quantitatively studied on cell line-based platforms using Kalman filter, where tumor cells' responses to drugs through the use of fluorescent reporters are sampled frequently over a time-course. It is expected that such preclinical study will provide valuable suggestions about dosing regimens for in vivo experimental stage to increase productivity.\",\"PeriodicalId\":181666,\"journal\":{\"name\":\"2011 IEEE International Workshop on Genomic Signal Processing and Statistics (GENSIPS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Workshop on Genomic Signal Processing and Statistics (GENSIPS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GENSiPS.2011.6169439\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Workshop on Genomic Signal Processing and Statistics (GENSIPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GENSiPS.2011.6169439","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Assessing the efficacy of molecularly targeted agents by using Kalman filter
A novel preclinical model combining experimental methods and theoretical analysis is proposed to investigate the mechanism of action and identify pharmacodynamic characteristic of a drug. Instead of fixed time point analysis of the drug exposure to drug effect, the time course of drug effect for different doses are quantitatively studied on cell line-based platforms using Kalman filter, where tumor cells' responses to drugs through the use of fluorescent reporters are sampled frequently over a time-course. It is expected that such preclinical study will provide valuable suggestions about dosing regimens for in vivo experimental stage to increase productivity.