为什么序列特征预测酶的机制?同源性与化学

Kirsten E. Beattie, Luna De Ferrari, John B. O. Mitchell
{"title":"为什么序列特征预测酶的机制?同源性与化学","authors":"Kirsten E. Beattie, Luna De Ferrari, John B. O. Mitchell","doi":"10.4137/EBO.S31482","DOIUrl":null,"url":null,"abstract":"First, we identify InterPro sequence signatures representing evolutionary relatedness and, second, signatures identifying specific chemical machinery. Thus, we predict the chemical mechanisms of enzyme-catalyzed reactions from catalytic and non-catalytic subsets of InterPro signatures. We first scanned our 249 sequences using InterProScan and then used the MACiE database to identify those amino acid residues that are important for catalysis. The sequences were mutated in silico to replace these catalytic residues with glycine and then again scanned using InterProScan. Those signature matches from the original scan that disappeared on mutation were called catalytic. Mechanism was predicted using all signatures, only the 78 “catalytic” signatures, or only the 519 “non-catalytic” signatures. The non-catalytic signatures gave indistinguishable results from those for the whole feature set, with precision of 0.991 and sensitivity of 0.970. The catalytic signatures alone gave less impressive predictivity, with precision and sensitivity of 0.791 and 0.735, respectively. These results show that our successful prediction of enzyme mechanism is mostly by homology rather than by identifying catalytic machinery.","PeriodicalId":136690,"journal":{"name":"Evolutionary Bioinformatics Online","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Why do Sequence Signatures Predict Enzyme Mechanism? Homology versus Chemistry\",\"authors\":\"Kirsten E. Beattie, Luna De Ferrari, John B. O. Mitchell\",\"doi\":\"10.4137/EBO.S31482\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"First, we identify InterPro sequence signatures representing evolutionary relatedness and, second, signatures identifying specific chemical machinery. Thus, we predict the chemical mechanisms of enzyme-catalyzed reactions from catalytic and non-catalytic subsets of InterPro signatures. We first scanned our 249 sequences using InterProScan and then used the MACiE database to identify those amino acid residues that are important for catalysis. The sequences were mutated in silico to replace these catalytic residues with glycine and then again scanned using InterProScan. Those signature matches from the original scan that disappeared on mutation were called catalytic. Mechanism was predicted using all signatures, only the 78 “catalytic” signatures, or only the 519 “non-catalytic” signatures. The non-catalytic signatures gave indistinguishable results from those for the whole feature set, with precision of 0.991 and sensitivity of 0.970. The catalytic signatures alone gave less impressive predictivity, with precision and sensitivity of 0.791 and 0.735, respectively. These results show that our successful prediction of enzyme mechanism is mostly by homology rather than by identifying catalytic machinery.\",\"PeriodicalId\":136690,\"journal\":{\"name\":\"Evolutionary Bioinformatics Online\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Evolutionary Bioinformatics Online\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4137/EBO.S31482\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolutionary Bioinformatics Online","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4137/EBO.S31482","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

首先,我们确定了代表进化相关性的InterPro序列特征,其次,确定了识别特定化学机制的特征。因此,我们通过InterPro标记的催化和非催化亚群来预测酶催化反应的化学机制。我们首先使用InterProScan扫描249个序列,然后使用MACiE数据库识别对催化作用重要的氨基酸残基。这些序列在硅中突变,用甘氨酸取代这些催化残基,然后再次使用InterProScan扫描。那些从原始扫描中消失的特征在突变中被称为催化。使用所有的特征来预测机理,只有78个“催化”特征,或只有519个“非催化”特征。非催化特征与整个特征集的结果难以区分,精度为0.991,灵敏度为0.970。单独的催化特征给出了不太令人印象深刻的预测,精度和灵敏度分别为0.791和0.735。这些结果表明,我们对酶机制的成功预测主要是通过同源性而不是通过识别催化机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Why do Sequence Signatures Predict Enzyme Mechanism? Homology versus Chemistry
First, we identify InterPro sequence signatures representing evolutionary relatedness and, second, signatures identifying specific chemical machinery. Thus, we predict the chemical mechanisms of enzyme-catalyzed reactions from catalytic and non-catalytic subsets of InterPro signatures. We first scanned our 249 sequences using InterProScan and then used the MACiE database to identify those amino acid residues that are important for catalysis. The sequences were mutated in silico to replace these catalytic residues with glycine and then again scanned using InterProScan. Those signature matches from the original scan that disappeared on mutation were called catalytic. Mechanism was predicted using all signatures, only the 78 “catalytic” signatures, or only the 519 “non-catalytic” signatures. The non-catalytic signatures gave indistinguishable results from those for the whole feature set, with precision of 0.991 and sensitivity of 0.970. The catalytic signatures alone gave less impressive predictivity, with precision and sensitivity of 0.791 and 0.735, respectively. These results show that our successful prediction of enzyme mechanism is mostly by homology rather than by identifying catalytic machinery.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信