基于无监督容忍粗糙集相对约简算法的乳房x线图像特征选择

I. L. Aroquiaraj, laurence. raj
{"title":"基于无监督容忍粗糙集相对约简算法的乳房x线图像特征选择","authors":"I. L. Aroquiaraj, laurence. raj","doi":"10.1109/ICPRIME.2013.6496718","DOIUrl":null,"url":null,"abstract":"Feature Selection (FS) aims to determine a minimal feature subset from a problem domain while retaining a suitably high accuracy in representing the original features. Rough set theory (RST) has been used as such a tool with much success. In the supervised FS methods, various feature subsets are evaluated using an evaluation function or metric to select only those features which are related to the decision classes of the data under consideration. However, for many data mining applications, decision class labels are often unknown or incomplete, thus indicating the significance of unsupervised feature selection. However, in unsupervised learning, decision class labels are not provided. The problem is that not all features are important. Some of the features may be redundant, and others may be irrelevant and noisy. In this paper, a novel unsupervised feature selection in mammogram image, using tolerance rough set based relative reduct is proposed. And also, compared with Tolerance Quick Reduct and PSO - Relative Reduct unsupervised feature selection methods. A typical mammogram image processing system generally consists of mammogram image acquisition, pre-processing of image segmentation, feature extraction, feature selection and classification. The proposed method is used to reduce features from the extracted features and the method is compared with existing unsupervised features selection methods. The proposed method is evaluated through clustering and classification algorithms in K-means and WEKA.","PeriodicalId":123210,"journal":{"name":"2013 International Conference on Pattern Recognition, Informatics and Mobile Engineering","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Mammogram image feature selection using unsupervised tolerance rough set relative reduct algorithm\",\"authors\":\"I. L. Aroquiaraj, laurence. raj\",\"doi\":\"10.1109/ICPRIME.2013.6496718\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Feature Selection (FS) aims to determine a minimal feature subset from a problem domain while retaining a suitably high accuracy in representing the original features. Rough set theory (RST) has been used as such a tool with much success. In the supervised FS methods, various feature subsets are evaluated using an evaluation function or metric to select only those features which are related to the decision classes of the data under consideration. However, for many data mining applications, decision class labels are often unknown or incomplete, thus indicating the significance of unsupervised feature selection. However, in unsupervised learning, decision class labels are not provided. The problem is that not all features are important. Some of the features may be redundant, and others may be irrelevant and noisy. In this paper, a novel unsupervised feature selection in mammogram image, using tolerance rough set based relative reduct is proposed. And also, compared with Tolerance Quick Reduct and PSO - Relative Reduct unsupervised feature selection methods. A typical mammogram image processing system generally consists of mammogram image acquisition, pre-processing of image segmentation, feature extraction, feature selection and classification. The proposed method is used to reduce features from the extracted features and the method is compared with existing unsupervised features selection methods. The proposed method is evaluated through clustering and classification algorithms in K-means and WEKA.\",\"PeriodicalId\":123210,\"journal\":{\"name\":\"2013 International Conference on Pattern Recognition, Informatics and Mobile Engineering\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-04-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Conference on Pattern Recognition, Informatics and Mobile Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPRIME.2013.6496718\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Pattern Recognition, Informatics and Mobile Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPRIME.2013.6496718","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

特征选择(Feature Selection, FS)旨在从问题域中确定最小的特征子集,同时在表示原始特征时保持适当的高精度。粗糙集理论(RST)作为这样一种工具已经被成功地使用。在监督FS方法中,使用评估函数或度量来评估各种特征子集,以仅选择与所考虑的数据的决策类相关的特征。然而,对于许多数据挖掘应用,决策类标签往往是未知的或不完整的,这表明了无监督特征选择的重要性。然而,在无监督学习中,不提供决策类标签。问题是并不是所有的功能都很重要。一些特征可能是冗余的,而另一些特征可能是无关的和嘈杂的。本文提出了一种新的基于公差粗糙集的乳腺x线图像无监督特征选择方法。并与公差快速约简和PSO -相对约简两种无监督特征选择方法进行了比较。典型的乳房x光图像处理系统一般包括乳房x光图像采集、图像分割预处理、特征提取、特征选择和分类。利用该方法对提取的特征进行特征约简,并与现有的无监督特征选择方法进行比较。通过K-means和WEKA的聚类和分类算法对所提出的方法进行了评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mammogram image feature selection using unsupervised tolerance rough set relative reduct algorithm
Feature Selection (FS) aims to determine a minimal feature subset from a problem domain while retaining a suitably high accuracy in representing the original features. Rough set theory (RST) has been used as such a tool with much success. In the supervised FS methods, various feature subsets are evaluated using an evaluation function or metric to select only those features which are related to the decision classes of the data under consideration. However, for many data mining applications, decision class labels are often unknown or incomplete, thus indicating the significance of unsupervised feature selection. However, in unsupervised learning, decision class labels are not provided. The problem is that not all features are important. Some of the features may be redundant, and others may be irrelevant and noisy. In this paper, a novel unsupervised feature selection in mammogram image, using tolerance rough set based relative reduct is proposed. And also, compared with Tolerance Quick Reduct and PSO - Relative Reduct unsupervised feature selection methods. A typical mammogram image processing system generally consists of mammogram image acquisition, pre-processing of image segmentation, feature extraction, feature selection and classification. The proposed method is used to reduce features from the extracted features and the method is compared with existing unsupervised features selection methods. The proposed method is evaluated through clustering and classification algorithms in K-means and WEKA.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信