有限分布信息下的机会约束优化:基于抽样和分布鲁棒性的重新表述综述

IF 2.6 Q2 OPERATIONS RESEARCH & MANAGEMENT SCIENCE
Simge Küçükyavuz , Ruiwei Jiang
{"title":"有限分布信息下的机会约束优化:基于抽样和分布鲁棒性的重新表述综述","authors":"Simge Küçükyavuz ,&nbsp;Ruiwei Jiang","doi":"10.1016/j.ejco.2022.100030","DOIUrl":null,"url":null,"abstract":"<div><p>Chance-constrained programming (CCP) is one of the most difficult classes of optimization problems that has attracted the attention of researchers since the 1950s. In this survey, we focus on cases when only limited information on the distribution is available, such as a sample from the distribution, or the moments of the distribution. We first review recent developments in mixed-integer linear formulations of chance-constrained programs that arise from finite discrete distributions (or sample average approximation). We highlight successful reformulations and decomposition techniques that enable the solution of large-scale instances. We then review active research in distributionally robust CCP, which is a framework to address the ambiguity in the distribution of the random data. The focal point of our review is on scalable formulations that can be readily implemented with state-of-the-art optimization software. Furthermore, we highlight the prevalence of CCPs with a review of applications across multiple domains.</p></div>","PeriodicalId":51880,"journal":{"name":"EURO Journal on Computational Optimization","volume":"10 ","pages":"Article 100030"},"PeriodicalIF":2.6000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2192440622000065/pdfft?md5=9e123764c3bf29d9a58fa0f64cbc4b9a&pid=1-s2.0-S2192440622000065-main.pdf","citationCount":"15","resultStr":"{\"title\":\"Chance-constrained optimization under limited distributional information: A review of reformulations based on sampling and distributional robustness\",\"authors\":\"Simge Küçükyavuz ,&nbsp;Ruiwei Jiang\",\"doi\":\"10.1016/j.ejco.2022.100030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Chance-constrained programming (CCP) is one of the most difficult classes of optimization problems that has attracted the attention of researchers since the 1950s. In this survey, we focus on cases when only limited information on the distribution is available, such as a sample from the distribution, or the moments of the distribution. We first review recent developments in mixed-integer linear formulations of chance-constrained programs that arise from finite discrete distributions (or sample average approximation). We highlight successful reformulations and decomposition techniques that enable the solution of large-scale instances. We then review active research in distributionally robust CCP, which is a framework to address the ambiguity in the distribution of the random data. The focal point of our review is on scalable formulations that can be readily implemented with state-of-the-art optimization software. Furthermore, we highlight the prevalence of CCPs with a review of applications across multiple domains.</p></div>\",\"PeriodicalId\":51880,\"journal\":{\"name\":\"EURO Journal on Computational Optimization\",\"volume\":\"10 \",\"pages\":\"Article 100030\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2192440622000065/pdfft?md5=9e123764c3bf29d9a58fa0f64cbc4b9a&pid=1-s2.0-S2192440622000065-main.pdf\",\"citationCount\":\"15\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EURO Journal on Computational Optimization\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2192440622000065\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"OPERATIONS RESEARCH & MANAGEMENT SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EURO Journal on Computational Optimization","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2192440622000065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 15

摘要

机会约束规划(CCP)是20世纪50年代以来备受关注的一类最困难的优化问题。在本调查中,我们关注的是只有有限信息可用的分布情况,例如来自分布的样本,或分布的矩。我们首先回顾了由有限离散分布(或样本平均近似)产生的机会约束规划的混合整数线性公式的最新进展。我们强调了能够解决大规模实例的成功的重新表述和分解技术。然后,我们回顾了分布鲁棒CCP的活跃研究,这是一个解决随机数据分布模糊性的框架。我们审查的重点是可扩展的配方,可以很容易地实现与最先进的优化软件。此外,我们通过回顾多个领域的应用来强调ccp的流行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Chance-constrained optimization under limited distributional information: A review of reformulations based on sampling and distributional robustness

Chance-constrained programming (CCP) is one of the most difficult classes of optimization problems that has attracted the attention of researchers since the 1950s. In this survey, we focus on cases when only limited information on the distribution is available, such as a sample from the distribution, or the moments of the distribution. We first review recent developments in mixed-integer linear formulations of chance-constrained programs that arise from finite discrete distributions (or sample average approximation). We highlight successful reformulations and decomposition techniques that enable the solution of large-scale instances. We then review active research in distributionally robust CCP, which is a framework to address the ambiguity in the distribution of the random data. The focal point of our review is on scalable formulations that can be readily implemented with state-of-the-art optimization software. Furthermore, we highlight the prevalence of CCPs with a review of applications across multiple domains.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
EURO Journal on Computational Optimization
EURO Journal on Computational Optimization OPERATIONS RESEARCH & MANAGEMENT SCIENCE-
CiteScore
3.50
自引率
0.00%
发文量
28
审稿时长
60 days
期刊介绍: The aim of this journal is to contribute to the many areas in which Operations Research and Computer Science are tightly connected with each other. More precisely, the common element in all contributions to this journal is the use of computers for the solution of optimization problems. Both methodological contributions and innovative applications are considered, but validation through convincing computational experiments is desirable. The journal publishes three types of articles (i) research articles, (ii) tutorials, and (iii) surveys. A research article presents original methodological contributions. A tutorial provides an introduction to an advanced topic designed to ease the use of the relevant methodology. A survey provides a wide overview of a given subject by summarizing and organizing research results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信